Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
A small, easy-to-use open source database of over 2000 GPUs with architecture, manufacturing, API support and performance details.
A small, easy-to-use open source database of over 2000 GPUs with architecture, manufacturing, API support and performance details sourced from TechPowerUp.
DBGPU is available on PyPI and can be installed with pip:
pip install dbgpu
In order to be as minimal as possible (the package is only 170kb
compressed,) some features are only available as additional dependencies. To install any additional package, use pip install dbgpu[package]
:
dbgpu[tabulate]
will install tabulate for pretty-printing tables.dbgpu[fuzz]
will install thefuzz for fuzzy searching.dbgpu[build]
will install requests, beautifulsoup4 and tqdm for building the database.dbgpu[socks]
will install PySocks for SOCKS proxy support.dbgpu[all]
will install all optional dependencies.from dbgpu import GPUDatabase
database = GPUDatabase.default()
spec = database["GeForce GTX 1080"]
# Using fuzzy search (slower):
# spec = database.search("GTX 1080")
print(spec)
This is the output without tabulate
available; see below for an example with it installed.
----------------
GeForce GTX 1080
----------------
GPU Name: GP104
Manufacturer: NVIDIA
Architecture: Pascal
Foundry: TSMC
Process Size: 16 nm
Transistor Count: 7.2 billion
Transistor Density: 22.9 million/mm²
Die Size: 314 mm²
Chip Package: BGA-2150
Release Date: 2016-05-27
Generation: GeForce 10
Bus Interface: PCIe 3.0 x16
Base Clock: 1,607 MHz
Boost Clock: 1,733 MHz
Memory Clock: 1,251 MHz
Memory Size: 8.0 GB
Memory Type: GDDR5X
Memory Bus: 256 bit
Memory Bandwidth: 320.3 GB/s
Shading Units: 2,560
Texture Mapping Units: 160
Render Output Processors: 64
Streaming Multiprocessors: 20
Tensor Cores: Unknown
Ray Tracing Cores: Unknown
L1 Cache: 48.0 KB
L2 Cache: 2.0 MB
Thermal Design Power: 180 W
Board Length: 267 mm
Board Width: 112 mm
Board Slot Width: Dual-slot
Suggested PSU: 450 W
Power Connectors: 1x 8-pin
Display Connectors: 1x DVI, 1x HDMI 2.0, 3x DisplayPort 1.4a
DirectX Version: 12.1
OpenGL Version: 4.6
Vulkan Version: 1.3
OpenCL Version: 3.0
CUDA Version: 6.1
Shader Model Version: 6.7
Pixel Rate: 110.9 GPixel/s
Texture Rate: 277.3 GTexel/s
Half Float Performance: 138.6 GFLOP/s
Single Float Performance: 8.9 TFLOP/s
Double Float Performance: 277.3 GFLOP/s
Available fields and their types are:
class GPUSpecification:
manufacturer: MANUFACTURER_LITERAL # Manufacturer of the GPU
name: str # Common name of the GPU
gpu_name: str # Name of the GPU as per the manufacturer
generation: str # GPU generation, e.g. "GeForce 30"
base_clock_mhz: Optional[float] # Base clock speed in MHz
boost_clock_mhz: Optional[float] # Boost clock speed in MHz
architecture: Optional[str] # Architecture of the GPU, e.g. "Ampere"
foundry: Optional[str] # Foundry where the GPU was manufactured
process_size_nm: Optional[int] # Process size in whole nanometers
transistor_count_m: Optional[float] # Number of transistors in the GPU (in millions)
transistor_density_k_mm2: Optional[float] # Transistor density in thousands of transistors per square millimeter
die_size_mm2: Optional[float] # Die size in square millimeters
chip_package: Optional[str] # Package of the GPU chip
release_date: Optional[date] # Release date of the GPU
bus_interface: Optional[str] # Bus interface of the GPU
memory_clock_mhz: Optional[float] # Memory clock speed in MHz
memory_size_gb: Optional[float] # Size of the GPU memory in GB
memory_bus_bits: Optional[int] # Memory bus width in bits
memory_bandwidth_gb_s: Optional[float] # Memory bandwidth in GB/s
memory_type: Optional[str] # Type of the GPU memory, e.g. "GDDR6"
shading_units: int # Number of shading units in the GPU
texture_mapping_units: int # Number of texture mapping units (TMUs) in the GPU
render_output_processors: int # Number of render output processors (ROPs) in the GPU
streaming_multiprocessors: int # Number of streaming multiprocessors (SMs) in the GPU
tensor_cores: int # Number of tensor cores in the GPU
ray_tracing_cores: int # Number of ray tracing cores in the GPU
l1_cache_kb: float # L1 cache size in KB
l2_cache_mb: float # L2 cache size in MB
thermal_design_power_w: Optional[int] # Thermal design power in watts
board_length_mm: Optional[float] # Length of the GPU board in millimeters
board_width_mm: Optional[float] # Width of the GPU board in millimeters
board_slot_width: Optional[str] # The number of slots the GPU occupies
suggested_psu_w: Optional[int] # Suggested power supply unit in watts
power_connectors: Optional[str] # Power connectors required by the GPU, variant
display_connectors: Optional[str] # Display connectors available on the GPU, variant
directx_major_version: Optional[int] # DirectX major version supported by the GPU
directx_minor_version: Optional[int] # DirectX minor version supported by the GPU
opengl_major_version: Optional[int] # OpenGL major version supported by the GPU
opengl_minor_version: Optional[int] # OpenGL minor version supported by the GPU
vulkan_major_version: Optional[int] # Vulkan major version supported by the GPU
vulkan_minor_version: Optional[int] # Vulkan minor version supported by the GPU
opencl_major_version: Optional[int] # OpenCL major version supported by the GPU
opencl_minor_version: Optional[int] # OpenCL minor version supported by the GPU
cuda_major_version: Optional[int] # CUDA major version supported by the GPU
cuda_minor_version: Optional[int] # CUDA minor version supported by the GPU
shader_model_major_version: Optional[int] # Shader model major version supported by the GPU
shader_model_minor_version: Optional[int] # Shader model minor version supported by the GPU
pixel_rate_gpixel_s: Optional[float] # Pixel fill rate in GPixel/s
texture_rate_gtexel_s: Optional[float] # Texture fill rate in GTexel/s
half_float_performance_gflop_s: Optional[float] # Half-precision floating point performance in GFLOPS
single_float_performance_gflop_s: Optional[float] # Single-precision floating point performance in GFLOPS
double_float_performance_gflop_s: Optional[float] # Double-precision floating point performance in GFLOPS
To use your own database:
from dbgpu import GPUDatabase
database = GPUDatabase.from_file("path/to/database.json")
Supported formats are JSON, CSV and PKL. The PKL format is the fastest to load and is recommended for large databases.
$ dbgpu lookup "GeForce GTX 1080"
# Using fuzzy search (slower):
# dbgpu lookup GTX1080 --fuzzy
╒═══════════════════════════════════════════════════════════════════════╕
│ GeForce GTX 1080 │
├───────────────────────────────────────────────────────────────────────┤
│ GPU Name | GP104 │
│ Manufacturer | NVIDIA │
│ Architecture | Pascal │
│ Foundry | TSMC │
│ Process Size | 16 nm │
│ Transistor Count | 7.2 billion │
│ Transistor Density | 22.9 million/mm² │
│ Die Size | 314 mm² │
│ Chip Package | BGA-2150 │
│ Release Date | 2016-05-27 │
│ Generation | GeForce 10 │
│ Bus Interface | PCIe 3.0 x16 │
│ Base Clock | 1,607 MHz │
│ Boost Clock | 1,733 MHz │
│ Memory Clock | 1,251 MHz │
│ Memory Size | 8.0 GB │
│ Memory Type | GDDR5X │
│ Memory Bus | 256 bit │
│ Memory Bandwidth | 320.3 GB/s │
│ Shading Units | 2,560 │
│ Texture Mapping Units | 160 │
│ Render Output Processors | 64 │
│ Streaming Multiprocessors | 20 │
│ Tensor Cores | Unknown │
│ Ray Tracing Cores | Unknown │
│ L1 Cache | 48.0 KB │
│ L2 Cache | 2.0 MB │
│ Thermal Design Power | 180 W │
│ Board Length | 267 mm │
│ Board Width | 112 mm │
│ Board Slot Width | Dual-slot │
│ Suggested PSU | 450 W │
│ Power Connectors | 1x 8-pin │
│ Display Connectors | 1x DVI, 1x HDMI 2.0, 3x DisplayPort 1.4a │
│ DirectX Version | 12.1 │
│ OpenGL Version | 4.6 │
│ Vulkan Version | 1.3 │
│ OpenCL Version | 3.0 │
│ CUDA Version | 6.1 │
│ Shader Model Version | 6.7 │
│ Pixel Rate | 110.9 GPixel/s │
│ Texture Rate | 277.3 GTexel/s │
│ Half Float Performance | 138.6 GFLOP/s │
│ Single Float Performance | 8.9 TFLOP/s │
│ Double Float Performance | 277.3 GFLOP/s │
╘═══════════════════════════════════════════════════════════════════════╛
This is the output with tabulate
available; see above for an example without it installed.
Here is a potentially useful bash one-liner to look up the local machine, assuming the availability of the nvidia-smi
tool:
dbgpu lookup "$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{$1=""; print $0}' | cut -c2-)"
When installing from PyPI, the latest database is included. If you want to build the database yourself, you can use the dbgpu
command line tool:
dbgpu build
Note that requests are limited to 4 per minute to be courteous to TechPowerUp's servers. With over 2000 GPUs, a full build will take over 10 hours, with most of it spent waiting.
For that reason, if you need to build your own database, it's recommended to limit the build to a specific manufacturer and/or year range, e.g.:
dbgpu build --manufacturer NVIDIA --start-year 2023
Pass --help
for more options.
Usage: dbgpu build [OPTIONS]
Builds a database of GPUs from TechPowerUp.
Options:
-o, --output PATH Output file path. [default: /home/benjamin/mini
conda3/envs/enfugue/lib/python3.10/site-
packages/dbgpu/data.pkl]
-m, --manufacturer TEXT GPU manufacturers to include. Pass multiple
times for multiple manufacturers. [default:
NVIDIA, AMD, Intel, ATI, 3dfx, Matrox, XGI,
Sony]
-y, --start-year INTEGER Start year for GPU database. [default: 1986]
-Y, --end-year INTEGER End year for GPU database. [default: 2024]
-d, --courtesy-delay FLOAT Delay in seconds between requests. [default:
15.0]
-p, --proxy TEXT HTTPS proxy URL.
-t, --timeout FLOAT Timeout in seconds.
-r, --retry-max INTEGER Maximum number of retries. [default: 5]
-R, --retry-delay FLOAT Delay in seconds between retries. [default:
15.0]
--help Show this message and exit.
DBGPU is licensed under the MIT License. See LICENSE for more information.
This project is not affiliated with TechPowerUp, but could not exist without their website. If you find this project useful, please consider supporting them.
FAQs
A small, easy-to-use open source database of over 2000 GPUs with architecture, manufacturing, API support and performance details.
We found that dbgpu demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.