Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
DDL parase and Convert to BigQuery JSON schema and DDL statements module, available in Python.
CREATE TABLE
statement is supported.pip install:
$ pip install ddlparse
command install:
$ python setup.py install
pip update:
$ pip install ddlparse --upgrade
import json
from ddlparse import DdlParse
sample_ddl = """
CREATE TABLE My_Schema.Sample_Table (
Id integer PRIMARY KEY COMMENT 'User ID',
Name varchar(100) NOT NULL COMMENT 'User name',
Total bigint NOT NULL,
Avg decimal(5,1) NOT NULL,
Point int(10) unsigned,
Zerofill_Id integer unsigned zerofill NOT NULL,
Created_At date, -- Oracle 'DATE' -> BigQuery 'DATETIME'
UNIQUE (NAME)
);
"""
# parse pattern (1-1)
table = DdlParse().parse(sample_ddl)
# parse pattern (1-2) : Specify source database
table = DdlParse().parse(ddl=sample_ddl, source_database=DdlParse.DATABASE.oracle)
# parse pattern (2-1)
parser = DdlParse(sample_ddl)
table = parser.parse()
print("* BigQuery Fields * : normal")
print(table.to_bigquery_fields())
# parse pattern (2-2) : Specify source database
parser = DdlParse(ddl=sample_ddl, source_database=DdlParse.DATABASE.oracle)
table = parser.parse()
# parse pattern (3-1)
parser = DdlParse()
parser.ddl = sample_ddl
table = parser.parse()
# parse pattern (3-2) : Specify source database
parser = DdlParse()
parser.source_database = DdlParse.DATABASE.oracle
parser.ddl = sample_ddl
table = parser.parse()
print("* BigQuery Fields * : Oracle")
print(table.to_bigquery_fields())
print("* TABLE *")
print("schema = {} : name = {} : is_temp = {}".format(table.schema, table.name, table.is_temp))
print("* BigQuery Fields *")
print(table.to_bigquery_fields())
print("* BigQuery Fields - column name to lower case / upper case *")
print(table.to_bigquery_fields(DdlParse.NAME_CASE.lower))
print(table.to_bigquery_fields(DdlParse.NAME_CASE.upper))
print("* COLUMN *")
for col in table.columns.values():
col_info = {}
col_info["name"] = col.name
col_info["data_type"] = col.data_type
col_info["length"] = col.length
col_info["precision(=length)"] = col.precision
col_info["scale"] = col.scale
col_info["is_unsigned"] = col.is_unsigned
col_info["is_zerofill"] = col.is_zerofill
col_info["constraint"] = col.constraint
col_info["not_null"] = col.not_null
col_info["PK"] = col.primary_key
col_info["unique"] = col.unique
col_info["auto_increment"] = col.auto_increment
col_info["distkey"] = col.distkey
col_info["sortkey"] = col.sortkey
col_info["encode"] = col.encode
col_info["default"] = col.default
col_info["character_set"] = col.character_set
col_info["bq_legacy_data_type"] = col.bigquery_legacy_data_type
col_info["bq_standard_data_type"] = col.bigquery_standard_data_type
col_info["comment"] = col.comment
col_info["description(=comment)"] = col.description
col_info["bigquery_field"] = json.loads(col.to_bigquery_field())
print(json.dumps(col_info, indent=2, ensure_ascii=False))
print("* DDL (CREATE TABLE) statements *")
print(table.to_bigquery_ddl())
print("* DDL (CREATE TABLE) statements - dataset name, table name and column name to lower case / upper case *")
print(table.to_bigquery_ddl(DdlParse.NAME_CASE.lower))
print(table.to_bigquery_ddl(DdlParse.NAME_CASE.upper))
print("* Get Column object (case insensitive) *")
print(table.columns["total"])
print(table.columns["total"].data_type)
Shinichi Takii shinichi.takii@shaketh.com
FAQs
DDL parase and Convert to BigQuery JSON schema
We found that ddlparse demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.