
Research
PyPI Package Disguised as Instagram Growth Tool Harvests User Credentials
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Simple bulk update over Django ORM or with helper function.
This project aims to bulk update given objects using one query over Django ORM.
pip install django-bulk-update
With manager:
import random
from django_bulk_update.manager import BulkUpdateManager
from tests.models import Person
class Person(models.Model):
...
objects = BulkUpdateManager()
random_names = ['Walter', 'The Dude', 'Donny', 'Jesus']
people = Person.objects.all()
for person in people:
person.name = random.choice(random_names)
Person.objects.bulk_update(people, update_fields=['name']) # updates only name column
Person.objects.bulk_update(people, exclude_fields=['username']) # updates all columns except username
Person.objects.bulk_update(people) # updates all columns
Person.objects.bulk_update(people, batch_size=50000) # updates all columns by 50000 sized chunks
With helper:
import random
from django_bulk_update.helper import bulk_update
from tests.models import Person
random_names = ['Walter', 'The Dude', 'Donny', 'Jesus']
people = Person.objects.all()
for person in people:
person.name = random.choice(random_names)
bulk_update(people, update_fields=['name']) # updates only name column
bulk_update(people, exclude_fields=['username']) # updates all columns except username
bulk_update(people, using='someotherdb') # updates all columns using the given db
bulk_update(people) # updates all columns using the default db
bulk_update(people, batch_size=50000) # updates all columns by 50000 sized chunks using the default db
Note: You can consider to use .only('name')
when you only want to update name
, so that Django will only retrieve name data from db.
And consider to use .defer('username')
when you don't want to update username
, so Django won't retrieve username from db.
These optimization can improve the performance even more.
Here we test the performance of the bulk_update
function vs. simply calling
.save()
on every object update (dmmy_update
). The interesting metric is the speedup using
the bulk_update
function more than the actual raw times.
# Note: SQlite is unable to run the `timeit` tests
# due to the max number of sql variables
In [1]: import os
In [2]: import timeit
In [3]: import django
In [4]: os.environ['DJANGO_SETTINGS_MODULE'] = 'tests.test_settings'
In [5]: django.setup()
In [6]: from tests.fixtures import create_fixtures
In [7]: django.db.connection.creation.create_test_db()
In [8]: create_fixtures(1000)
In [9]: setup='''
import random
from django_bulk_update import helper
from tests.models import Person
random_names = ['Walter', 'The Dude', 'Donny', 'Jesus']
ids = list(Person.objects.values_list('id', flat=True)[:1000])
people = Person.objects.filter(id__in=ids)
for p in people:
name = random.choice(random_names)
p.name = name
p.email = '%s@example.com' % name
bu_update = lambda: helper.bulk_update(people, update_fields=['name', 'email'])
'''
In [10]: bu_perf = min(timeit.Timer('bu_update()', setup=setup).repeat(7, 100))
In [11]: setup='''
import random
from tests.models import Person
from django.db.models import F
random_names = ['Walter', 'The Dude', 'Donny', 'Jesus']
ids = list(Person.objects.values_list('id', flat=True)[:1000])
people = Person.objects.filter(id__in=ids)
def dmmy_update():
for p in people:
name = random.choice(random_names)
p.name = name
p.email = '%s@example.com' % name
p.save(update_fields=['name', 'email'])
'''
In [12]: dmmy_perf = min(timeit.Timer('dmmy_update()', setup=setup).repeat(7, 100))
In [13]: print 'Bulk update performance: %.2f. Dummy update performance: %.2f. Speedup: %.2f.' % (bu_perf, dmmy_perf, dmmy_perf / bu_perf)
Bulk update performance: 7.05. Dummy update performance: 373.12. Speedup: 52.90.
django-bulk-update is released under the MIT License. See the LICENSE file for more details.
FAQs
Bulk update using one query over Django ORM.
We found that django-bulk-update demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.
Security News
Research
Socket uncovered two npm packages that register hidden HTTP endpoints to delete all files on command.