Domain Management Tool
DMT (for short) is a collection of tools to manage your RASA domains like if they were packages not unlike pip with python but with YAML for RASA.
Installation
pip install dmt
# Or using
#pip install git+https://gitlab.com/waser-technologies/technologies/dmt.git
Usage
Use the dmt
shortcut command.
❯ dmt --help
usage: dmt [-h] [-v] [-l] [-c] [-a ADD] [-s] [-V] [-T] [-S]
Domain Management Tool
optional arguments:
-h, --help show this help message and exit
-v, --version output version information and exit
-l, --list list installed domains
-c, --create Create a new domain from template
-a ADD, --add ADD git repository hosting a domain to add
-s, --sync Synchronize all installed domains
-V, --validate Validate all installed domains
-T, --train Train new model from all installed domains
-S, --serve Serve the lastest model
-L LANG, --lang LANG language to work with (defaults to your system preference: $LANG)
Find a domain using the tag #NLP Domains.
And add it.
dmt --add $domain_git_url
Now validate the domain's data with the installed ones.
dmt --validate
This will generate some warnings but that is ok most of the time. Unless you made the domain, in which case you should act upon them.
As long as there is not any error you can train a new model using your data. This will take time and computing resourses.
dmt --train
Or you could add, validate and train with a new domain in one line.
dmt -V -T -a $domain_git_url
Once trained, you should be able to serve the latest model using the dmt
.
dmt --serve
Or by enabling its service.
cp ./dmt.service.example /usr/lib/systemd/user/dmt.service
systemctl --user enable --now dmt.service
You can also import those tools from python
.
from domain.management import tools as dmt
INSTALL_PATH="/usr/share/assistant"
path_to_new_domain = "smalltalk"
domains_path = f"{INSTALL_PATH}/domains/en"
dmt.install_domain(tmp_domain, domains_path)
list_installed_domains = dmt.get_list_installed_domains(domains_path)
dmt.validate_data(INSTALL_PATH, domains="domains/en", data="data/en", config="configs/en/config.yml")
dmt.train_lm(INSTALL_PATH, domains="domains/en", data="data/en", config="configs/en/config.yml", models="models/en/NLU")
dmt.models_as_service()
Creating your own domains
DMT allows you to quickly start a new domain from a template.
dmt --create
Once hosted, you can use the --add
flag to install your domain.
With python.
from domain.management import tools as dmt
dmt.bake_cookie_domain(recipe_url="https://gitlab.com/waser-technologies/cookiecutters/nlu-domain-template")