Security News
38% of CISOs Fear They’re Not Moving Fast Enough on AI
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.
EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.
EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.
Check out our interactive demo !
You can install EDS-NLP via pip
. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.
pip install edsnlp==0.15.0
or if you want to use the trainable components (using pytorch)
pip install "edsnlp[ml]==0.15.0"
Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.
import edsnlp, edsnlp.pipes as eds
nlp = edsnlp.blank("eds")
terms = dict(
covid=["covid", "coronavirus"],
)
# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")
# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")
doc.ents
# Out: (covid,)
doc.ents[0]._.negation
# Out: True
Go to the documentation for more information.
The performances of an extraction pipeline may depend on the population and documents that are considered.
We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.
If you use EDS-NLP, please cite us as below.
@misc{edsnlp,
author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
doi = {10.5281/zenodo.6424993},
title = {EDS-NLP: efficient information extraction from French clinical notes},
url = {https://aphp.github.io/edsnlp}
}
We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.
FAQs
Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.
We found that edsnlp demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Research
Security News
Socket researchers uncovered a backdoored typosquat of BoltDB in the Go ecosystem, exploiting Go Module Proxy caching to persist undetected for years.
Security News
Company News
Socket is joining TC54 to help develop standards for software supply chain security, contributing to the evolution of SBOMs, CycloneDX, and Package URL specifications.