
Research
2025 Report: Destructive Malware in Open Source Packages
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.
esperanto
Advanced tools
Esperanto is a powerful Python library that provides a unified interface for interacting with various Large Language Model (LLM) providers. It simplifies the process of working with different AI models (LLMs, Embedders, Transcribers, and TTS) APIs by offering a consistent interface while maintaining provider-specific optimizations.
ðŠķ Ultra-Lightweight Architecture
httpx - no bulky vendor SDKs requiredð True Provider Flexibility
⥠Perfect for Production
Whether you're building a quick prototype or a production application serving millions of requests, Esperanto gives you the performance of direct API calls with the convenience of a unified interface.
CHANGELOG - Version history and migration guides
Install Esperanto using pip:
pip install esperanto
Transformers Provider
If you plan to use the transformers provider, install with the transformers extra:
pip install "esperanto[transformers]"
This installs:
transformers - Core Hugging Face librarytorch - PyTorch frameworktokenizers - Fast tokenizationsentence-transformers - CrossEncoder supportscikit-learn - Advanced embedding featuresnumpy - Numerical computationsLangChain Integration
If you plan to use any of the .to_langchain() methods, you need to install the correct LangChain SDKs manually:
# Core LangChain dependencies (required)
pip install "langchain>=0.3.8,<0.4.0" "langchain-core>=0.3.29,<0.4.0"
# Provider-specific LangChain packages (install only what you need)
pip install "langchain-openai>=0.2.9"
pip install "langchain-anthropic>=0.3.0"
pip install "langchain-google-genai>=2.1.2"
pip install "langchain-ollama>=0.2.0"
pip install "langchain-groq>=0.2.1"
pip install "langchain_mistralai>=0.2.1"
pip install "langchain_deepseek>=0.1.3"
pip install "langchain-google-vertexai>=2.0.24"
| Provider | LLM Support | Embedding Support | Reranking Support | Speech-to-Text | Text-to-Speech | JSON Mode |
|---|---|---|---|---|---|---|
| OpenAI | â | â | â | â | â | â |
| OpenAI-Compatible | â | â | â | â | â | â ïļ* |
| Anthropic | â | â | â | â | â | â |
| Groq | â | â | â | â | â | â |
| Google (GenAI) | â | â | â | â | â | â |
| Vertex AI | â | â | â | â | â | â |
| Ollama | â | â | â | â | â | â |
| Perplexity | â | â | â | â | â | â |
| Transformers | â | â | â | â | â | â |
| ElevenLabs | â | â | â | â | â | â |
| Azure OpenAI | â | â | â | â | â | â |
| Mistral | â | â | â | â | â | â |
| DeepSeek | â | â | â | â | â | â |
| Voyage | â | â | â | â | â | â |
| Jina | â | â | â | â | â | â |
| xAI | â | â | â | â | â | â |
| OpenRouter | â | â | â | â | â | â |
*â ïļ OpenAI-Compatible: JSON mode support depends on the specific endpoint implementation
You can use Esperanto in two ways: directly with provider-specific classes or through the AI Factory.
The AI Factory provides a convenient way to create model instances and discover available providers:
from esperanto.factory import AIFactory
# Get available providers for each model type
providers = AIFactory.get_available_providers()
print(providers)
# Output:
# {
# 'language': ['openai', 'openai-compatible', 'anthropic', 'google', 'groq', 'ollama', 'openrouter', 'xai', 'perplexity', 'azure', 'mistral', 'deepseek'],
# 'embedding': ['openai', 'openai-compatible', 'google', 'ollama', 'vertex', 'transformers', 'voyage', 'mistral', 'azure', 'jina'],
# 'reranker': ['jina', 'voyage', 'transformers'],
# 'speech_to_text': ['openai', 'openai-compatible', 'groq', 'elevenlabs', 'azure'],
# 'text_to_speech': ['openai', 'openai-compatible', 'elevenlabs', 'google', 'vertex', 'azure']
# }
# Create model instances
model = AIFactory.create_language(
"openai",
"gpt-3.5-turbo",
config={"structured": {"type": "json"}}
) # Language model
embedder = AIFactory.create_embedding("openai", "text-embedding-3-small") # Embedding model
reranker = AIFactory.create_reranker("transformers", "cross-encoder/ms-marco-MiniLM-L-6-v2") # Universal reranker model
transcriber = AIFactory.create_speech_to_text("openai", "whisper-1") # Speech-to-text model
speaker = AIFactory.create_text_to_speech("openai", "tts-1") # Text-to-speech model
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the capital of France?"},
]
response = model.chat_complete(messages)
# Create an embedding instance
texts = ["Hello, world!", "Another text"]
# Synchronous usage
embeddings = embedder.embed(texts)
# Async usage
embeddings = await embedder.aembed(texts)
Esperanto provides a convenient way to discover available models from providers without creating instances:
from esperanto.factory import AIFactory
# Discover available models from OpenAI
models = AIFactory.get_provider_models("openai", api_key="your-api-key")
for model in models:
print(f"{model.id} - owned by {model.owned_by}")
# Filter by model type (for providers like OpenAI that support multiple types)
language_models = AIFactory.get_provider_models(
"openai",
api_key="your-api-key",
model_type="language" # Options: 'language', 'embedding', 'speech_to_text', 'text_to_speech'
)
# Some providers return hardcoded lists (e.g., Anthropic)
claude_models = AIFactory.get_provider_models("anthropic")
for model in claude_models:
print(f"{model.id} - Context: {model.context_window} tokens")
# Example output:
# claude-3-5-sonnet-20241022 - Context: 200000 tokens
# claude-3-5-haiku-20241022 - Context: 200000 tokens
# claude-3-opus-20240229 - Context: 200000 tokens
# OpenAI-compatible endpoints (requires base_url)
local_models = AIFactory.get_provider_models(
"openai-compatible",
base_url="http://localhost:1234/v1" # LM Studio, vLLM, etc.
)
for model in local_models:
print(f"{model.id} - {model.owned_by}")
Benefits of Static Discovery:
Supported Providers:
Note: This is the recommended way to discover models. The
.modelsproperty on provider instances is deprecated and will be removed in version 3.0.
Here's a simple example to get you started:
from esperanto.providers.llm.openai import OpenAILanguageModel
from esperanto.providers.llm.anthropic import AnthropicLanguageModel
# Initialize a provider with structured output
model = OpenAILanguageModel(
api_key="your-api-key",
model_name="gpt-4", # Optional, defaults to gpt-4
structured={"type": "json"} # Optional, for JSON output
)
# Simple chat completion
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "List three colors in JSON format"}
]
# Synchronous call
response = model.chat_complete(messages)
print(response.choices[0].message.content) # Will be in JSON format
# Async call
async def get_response():
response = await model.achat_complete(messages)
print(response.choices[0].message.content) # Will be in JSON format
All providers in Esperanto return standardized response objects, making it easy to work with different models without changing your code.
from esperanto.factory import AIFactory
model = AIFactory.create_language(
"openai",
"gpt-3.5-turbo",
config={"structured": {"type": "json"}}
)
messages = [{"role": "user", "content": "Hello!"}]
# All LLM responses follow this structure
response = model.chat_complete(messages)
print(response.choices[0].message.content) # The actual response text
print(response.choices[0].message.role) # 'assistant'
print(response.model) # The model used
print(response.usage.total_tokens) # Token usage information
print(response.content) # Shortcut for response.choices[0].message.content
# For streaming responses
for chunk in model.chat_complete(messages):
print(chunk.choices[0].delta.content, end="", flush=True)
# Async streaming
async for chunk in model.achat_complete(messages):
print(chunk.choices[0].delta.content, end="", flush=True)
from esperanto.factory import AIFactory
model = AIFactory.create_embedding("openai", "text-embedding-3-small")
texts = ["Hello, world!", "Another text"]
# All embedding responses follow this structure
response = model.embed(texts)
print(response.data[0].embedding) # Vector for first text
print(response.data[0].index) # Index of the text (0)
print(response.model) # The model used
print(response.usage.total_tokens) # Token usage information
from esperanto.factory import AIFactory
reranker = AIFactory.create_reranker("transformers", "BAAI/bge-reranker-base")
query = "What is machine learning?"
documents = [
"Machine learning is a subset of artificial intelligence.",
"The weather is nice today.",
"Python is a programming language used in ML."
]
# All reranking responses follow this structure
response = reranker.rerank(query, documents, top_k=2)
print(response.results[0].document) # Highest ranked document
print(response.results[0].relevance_score) # Normalized 0-1 relevance score
print(response.results[0].index) # Original document index
print(response.model) # The model used
Esperanto supports advanced task-aware embeddings that optimize vector representations for specific use cases. This works across all embedding providers through a universal interface:
from esperanto.factory import AIFactory
from esperanto.common_types.task_type import EmbeddingTaskType
# Task-optimized embeddings work with ANY provider
model = AIFactory.create_embedding(
provider="jina", # Also works with: "openai", "google", "transformers", etc.
model_name="jina-embeddings-v3",
config={
"task_type": EmbeddingTaskType.RETRIEVAL_QUERY, # Optimize for search queries
"late_chunking": True, # Better long-context handling
"output_dimensions": 512 # Control vector size
}
)
# Generate optimized embeddings
query = "What is machine learning?"
embeddings = model.embed([query])
Universal Task Types:
RETRIEVAL_QUERY - Optimize for search queriesRETRIEVAL_DOCUMENT - Optimize for document storageSIMILARITY - General text similarityCLASSIFICATION - Text classification tasksCLUSTERING - Document clusteringCODE_RETRIEVAL - Code search optimizationQUESTION_ANSWERING - Optimize for Q&A tasksFACT_VERIFICATION - Optimize for fact checkingProvider Support:
The standardized response objects ensure consistency across different providers, making it easy to:
from esperanto.providers.llm.openai import OpenAILanguageModel
model = OpenAILanguageModel(
api_key="your-api-key", # Or set OPENAI_API_KEY env var
model_name="gpt-4", # Optional
temperature=0.7, # Optional
max_tokens=850, # Optional
streaming=False, # Optional
top_p=0.9, # Optional
structured={"type": "json"}, # Optional, for JSON output
base_url=None, # Optional, for custom endpoint
organization=None # Optional, for org-specific API
)
Use any OpenAI-compatible endpoint (LM Studio, Ollama, vLLM, custom deployments) with the same interface:
from esperanto.factory import AIFactory
# Using factory config
model = AIFactory.create_language(
"openai-compatible",
"your-model-name", # Use any model name supported by your endpoint
config={
"base_url": "http://localhost:1234/v1", # Your endpoint URL (required)
"api_key": "your-api-key" # Your API key (optional)
}
)
# Or set environment variables
# Generic (works for all provider types):
# OPENAI_COMPATIBLE_BASE_URL=http://localhost:1234/v1
# OPENAI_COMPATIBLE_API_KEY=your-api-key # Optional for endpoints that don't require auth
# Provider-specific (takes precedence over generic):
# OPENAI_COMPATIBLE_BASE_URL_LLM=http://localhost:1234/v1
# OPENAI_COMPATIBLE_API_KEY_LLM=your-api-key
model = AIFactory.create_language("openai-compatible", "your-model-name")
# Works with any OpenAI-compatible endpoint
messages = [{"role": "user", "content": "Hello!"}]
response = model.chat_complete(messages)
print(response.content)
# Streaming support
for chunk in model.chat_complete(messages, stream=True):
print(chunk.choices[0].delta.content, end="", flush=True)
Common Use Cases:
ollama serve with OpenAI compatibilityFeatures:
Environment Variable Configuration:
OpenAI-compatible providers support both generic and provider-specific environment variables:
Generic variables (work for all provider types):
OPENAI_COMPATIBLE_BASE_URL - Base URL for the endpointOPENAI_COMPATIBLE_API_KEY - API key (if required)Provider-specific variables (take precedence over generic):
OPENAI_COMPATIBLE_BASE_URL_LLM, OPENAI_COMPATIBLE_API_KEY_LLMOPENAI_COMPATIBLE_BASE_URL_EMBEDDING, OPENAI_COMPATIBLE_API_KEY_EMBEDDINGOPENAI_COMPATIBLE_BASE_URL_STT, OPENAI_COMPATIBLE_API_KEY_STTOPENAI_COMPATIBLE_BASE_URL_TTS, OPENAI_COMPATIBLE_API_KEY_TTSConfiguration Precedence (highest to lowest):
base_url=, api_key=)config={"base_url": ...})This allows you to use different OpenAI-compatible endpoints for different AI capabilities without code changes.
Perplexity uses an OpenAI-compatible API but includes additional parameters for controlling search behavior.
from esperanto.providers.llm.perplexity import PerplexityLanguageModel
model = PerplexityLanguageModel(
api_key="your-api-key", # Or set PERPLEXITY_API_KEY env var
model_name="llama-3-sonar-large-32k-online", # Recommended default
temperature=0.7, # Optional
max_tokens=850, # Optional
streaming=False, # Optional
top_p=0.9, # Optional
structured={"type": "json"}, # Optional, for JSON output
# Perplexity-specific parameters
search_domain_filter=["example.com", "-excluded.com"], # Optional, limit search domains
return_images=False, # Optional, include images in search results
return_related_questions=True, # Optional, return related questions
search_recency_filter="week", # Optional, filter search by time ('day', 'week', 'month', 'year')
web_search_options={"search_context_size": "high"} # Optional, control search context ('low', 'medium', 'high')
)
Esperanto provides flexible timeout configuration across all provider types with intelligent defaults and multiple configuration methods.
Different provider types have optimized default timeouts based on typical operation duration:
Configure timeouts using three methods with clear priority hierarchy:
from esperanto.factory import AIFactory
# LLM with custom timeout
model = AIFactory.create_language(
"openai",
"gpt-4",
config={"timeout": 120.0} # 2 minutes
)
# Embedding with custom timeout
embedder = AIFactory.create_embedding(
"openai",
"text-embedding-3-small",
config={"timeout": 90.0} # 1.5 minutes
)
# Speech-to-Text with longer timeout for large files
transcriber = AIFactory.create_speech_to_text(
"openai",
config={"timeout": 600.0} # 10 minutes
)
# Text-to-Speech with direct timeout parameter
speaker = AIFactory.create_text_to_speech(
"elevenlabs",
timeout=180.0 # 3 minutes
)
# Speech-to-Text with direct timeout parameter
transcriber = AIFactory.create_speech_to_text(
"openai",
timeout=450.0 # 7.5 minutes
)
Set global defaults for all instances of a provider type:
# Set environment variables
export ESPERANTO_LLM_TIMEOUT=90 # 90 seconds for all LLM providers
export ESPERANTO_EMBEDDING_TIMEOUT=120 # 2 minutes for all embedding providers
export ESPERANTO_RERANKER_TIMEOUT=75 # 75 seconds for all reranker providers
export ESPERANTO_STT_TIMEOUT=600 # 10 minutes for all STT providers
export ESPERANTO_TTS_TIMEOUT=400 # 6.5 minutes for all TTS providers
# These will use environment variable defaults
model = AIFactory.create_language("openai", "gpt-4") # Uses ESPERANTO_LLM_TIMEOUT
embedder = AIFactory.create_embedding("voyage", "voyage-2") # Uses ESPERANTO_EMBEDDING_TIMEOUT
Configuration resolves in this priority order:
# Example: Final timeout will be 150 seconds (config overrides env var)
# Even if ESPERANTO_LLM_TIMEOUT=90 is set
model = AIFactory.create_language(
"openai",
"gpt-4",
config={"timeout": 150.0} # This takes precedence
)
All timeout values are validated with clear error messages:
# These will raise ValueError with descriptive messages
AIFactory.create_language("openai", "gpt-4", config={"timeout": "invalid"}) # TypeError
AIFactory.create_language("openai", "gpt-4", config={"timeout": -1}) # Out of range
AIFactory.create_language("openai", "gpt-4", config={"timeout": 4000}) # Too large
Batch Processing
# Long timeout for batch embedding operations
embedder = AIFactory.create_embedding(
"openai",
"text-embedding-3-large",
config={"timeout": 300.0} # 5 minutes for large batches
)
Real-time Applications
# Shorter timeout for real-time chat
model = AIFactory.create_language(
"openai",
"gpt-3.5-turbo",
config={"timeout": 30.0} # 30 seconds for quick responses
)
Audio Processing
# Extended timeout for long audio files
transcriber = AIFactory.create_speech_to_text(
"openai",
config={"timeout": 900.0} # 15 minutes for hour-long audio files
)
Enable streaming to receive responses token by token:
# Enable streaming
model = OpenAILanguageModel(api_key="your-api-key", streaming=True)
# Synchronous streaming
for chunk in model.chat_complete(messages):
print(chunk.choices[0].delta.content, end="", flush=True)
# Async streaming
async for chunk in model.achat_complete(messages):
print(chunk.choices[0].delta.content, end="", flush=True)
Request JSON-formatted responses (supported by OpenAI and some OpenRouter models):
model = OpenAILanguageModel(
api_key="your-api-key", # or use ENV
structured={"type": "json"}
)
messages = [
{"role": "user", "content": "List three European capitals as JSON"}
]
response = model.chat_complete(messages)
# Response will be in JSON format
Convert any provider to a LangChain chat model:
model = OpenAILanguageModel(api_key="your-api-key")
langchain_model = model.to_langchain()
# Use with LangChain
from langchain.chains import ConversationChain
chain = ConversationChain(llm=langchain_model)
Complete documentation is available in the docs directory:
We welcome contributions! Please see our Contributing Guidelines for details on how to get started.
This project is licensed under the MIT License - see the LICENSE file for details.
git clone https://github.com/lfnovo/esperanto.git
cd esperanto
pip install -r requirements.txt
pytest
FAQs
A light-weight, production-ready, unified interface for various AI model providers
We found that esperanto demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Research
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.

Security News
Socket CTO Ahmad Nassri shares practical AI coding techniques, tools, and team workflows, plus what still feels noisy and why shipping remains human-led.

Research
/Security News
A five-month operation turned 27 npm packages into durable hosting for browser-run lures that mimic document-sharing portals and Microsoft sign-in, targeting 25 organizations across manufacturing, industrial automation, plastics, and healthcare for credential theft.