Euler's diagrams are non-empty Venn's diagrams. For further information about:
Click to unfold usage
We run command python example.py
on the folder with file example.py
and following content:
#!/usr/bin/env python
from eule import euler, euler_keys, euler_boundaries, Euler
sets = {
'a': [1, 2, 3],
'b': [2, 3, 4],
'c': [3, 4, 5],
'd': [3, 5, 6]
}
euler_diagram = euler(sets)
euler_keys = euler_keys(sets)
euler_boundaries = euler_boundaries(sets)
euler_instance=Euler(sets)
# Euler dictionary:
# {('a', 'b'): [2], ('b', 'c'): [4], ('a', 'b', 'c', 'd'): [3], ('c', 'd'): [5], ('d', ): [6], ('a', ): [1]}
print(euler_diagram)
print(euler_instance.as_dict())
print('\n')
# Euler keys list:
# [('a', 'b'), ('b', 'c'), ('a', 'b', 'c', d'), ('c', 'd'), ('d', ), ('a', )]
print(euler_keys)
print(euler_instance.euler_keys())
print('\n')
# Euler boundaries dictionary:
# {
# 'a': ['b', 'c', 'd'],
# 'b': ['a', 'c', 'd'],
# 'c': ['a', 'b', 'd'],
# 'd': ['a', 'b', 'c']
# }
print(euler_boundaries)
print(euler_instance.euler_boundaries())
print('\n')
# Euler instance match:
# {'a'}
# {'a', 'b'}
# {'c', 'a', 'b'}
print(euler_instance.match({1,2,3}))
print(euler_instance.match({1,2,3,4}))
print(euler_instance.match({1,2,3,4,5}))
print('\n')
# Euler instance getitem dunder:
# [1, 2, 3]
# [1, 2, 3]
# [1, 2, 3, 4]
# [1, 2, 3, 4, 5]
print(euler_instance['a'])
print(euler_instance[('a', )])
print(euler_instance[('a', 'b', )])
print(euler_instance[('a', 'b', 'c',)])
print('\n')
# Euler instance remove_key:
# {('b', 'c'): [4], ('c', 'd'): [5], ('b', 'c', 'd'): [3], ('d',): [6], ('b',): [2]}
euler_instance.remove_key('a')
print(euler_instance.as_dict())