
Research
Security News
The Growing Risk of Malicious Browser Extensions
Socket researchers uncover how browser extensions in trusted stores are used to hijack sessions, redirect traffic, and manipulate user behavior.
Generate fake data using joke2k's faker <https://github.com/joke2k/faker>
__ and your own schema.
.. code:: bash
pip install faker-schema
Getting started ^^^^^^^^^^^^^^^
.. code:: python
from faker_schema.faker_schema import FakerSchema
schema = {'employee_id': 'uuid4', 'employee_name': 'name', 'employee address': 'address',
'email_address': 'email'}
faker = FakerSchema()
data = faker.generate_fake(schema)
print(data)
# {'employee_id': '956f0cf3-a954-5bff-0aaf-ee0e1b7e1e1b', 'employee_name': 'Adam Wells',
# 'employee address': '189 Kyle Springs Suite 110\nNorth Robin, OR 73512',
# 'email_address': 'jmcgee@gmail.com'}
Available Schema Types ^^^^^^^^^^^^^^^^^^^^^^
This library is dependent on faker <https://github.com/joke2k/faker>
__
for availabble schema types. Faker provides a wide variety of data types
via providers. For a list of available providers, checkout
Providers <http://faker.readthedocs.io/en/master/providers.html>
__ and
Community Providers <http://faker.readthedocs.io/en/master/communityproviders.html>
__
Once you know what types you want to generate your fake data, you can start defining your own schema
Defining your schema ^^^^^^^^^^^^^^^^^^^^
The expected schema is a dictionary, where the keys are field names and the values are the types of the fields. The schema dictionay can have nested dictionaries and lists too.
Loading schemas ^^^^^^^^^^^^^^^
faker-schema currently provides two ways of loading your schema:
.. code:: python
import json
from faker_schema.faker_schema import FakerSchema
from faker_schema.schema_loader import load_json_from_file, load_json_from_string
schema = load_json_from_file('path_to_json_file')
faker = FakerSchema()
data = faker.generate_fake(schema)
# OR
json_string = '{"employee_id"": "uuid4", "employee_name": "name"", "employee address":
"address", "email_address": "email"}'
schema = load_json_from_string(json_string)
faker = FakerSchema()
data = faker.generate_fake(schema)
You can define your own way of loading a schema, convert it to a Python dictionary and pass it to the FakerSchema instance. The aim was to de-couple schema loading/generation from fake data generation. If you want to contribute more schema loading techniques, please open a GitHub issue or send a pull request.
Using different locales ^^^^^^^^^^^^^^^^^^^^^^^
The Faker <https://github.com/joke2k/faker>
__ library provides a list
of different locales <https://github.com/joke2k/faker#localization>
__.
You can choose your required locale from that list and provid it to the
FakerSchema instance
.. code:: python
from faker_schema.faker_schema import FakerSchema
schema = {'employee_id': 'uuid4', 'employee_name': 'name', 'employee address': 'address',
'email_address': 'email'}
faker = FakerSchema(locale='it_IT')
data = faker.generate_fake(schema)
print(data)
# {'employee_id': '47f8bb04-fc05-25c9-73cc-e8a22f29ee4e', 'employee_name': 'Caio Negri',
# 'employee address': 'Stretto Davis 34\nDamico lido, 54802 Vibo Valentia (TR)',
# 'email_address': 'nunzia19@libero.it'}
More Schema Examples ^^^^^^^^^^^^^^^^^^^^
Nested Dictionary ^^^^^^^^^^^^^^^^^
.. code:: python
from faker_schema.faker_schema import FakerSchema
schema = {'EmployeeInfo': {'ID': 'uuid4', 'Name': 'name', 'Contact': {'Email': 'email',
'Phone Number': 'phone_number'}, 'Location': {'Country Code': 'country_code',
'City': 'city', 'Country': 'country', 'Postal Code': 'postalcode',
'Address': 'street_address'}}}
faker = FakerSchema()
data = faker.generate_fake(schema)
# {'EmployeeInfo': {'ID': '0751f889-0d83-d05f-4eeb-16f575c6b4a3', 'Name': 'Stacey Williams',
# 'Contact': {'Email':'jpatterson@yahoo.com', 'Phone Number': '1-077-859-6393'},
# 'Location': {'Country Code': 'IE', 'City': 'Dyermouth', 'Country':
# 'United States Minor Outlying Islands', 'Postal Code': '84239',
# 'Address': '94806 Joseph Plaza Apt. 783'}}}
Nested List ^^^^^^^^^^^
.. code:: python
from faker_schema.faker_schema import FakerSchema
schema = {'Employer': 'name', 'EmployeList': [{'Name': 'name'}, {'Name': 'name'},
{'Name': 'name'}]}
faker = FakerSchema()
data = faker.generate_fake(schema)
# {'Employer': 'Faith Knapp', 'EmployeList': [{'Name': 'Douglas Bailey'},
# {'Name': 'Karen Rivera'}, {'Name': 'Linda Vance MD'}]}
Generating a certain number of fake data from given schema ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from faker_schema.faker_schema import FakerSchema
schema = {'employee_id': 'uuid4', 'employee_name': 'name', 'employee address': 'address',
'email_address': 'email'}
faker = FakerSchema()
data = faker.generate_fake(schema, iterations=4)
print(data)
# [{'employee_id': 'e07a7964-9636-bca6-2a58-4a69ac126dc5', 'employee_name':
# 'Charlene Blankenship', 'employee address': '0431 Edward Mountains Suite 697\nPort Douglas,
# TX 96239-7277', 'email_address': 'ashley86@yahoo.com'}, {'employee_id':
# '42b02262-3e0c-cf40-8257-4a0af122dddb', 'employee_name': 'Cheryl Stevens',
# 'employee address': '48066 Eric Lake\nPhillipshire, MO 57224', 'email_address':
# 'lisa05@nash.info'}, {'employee_id': '41efbcc4-bb32-9260-b2b3-8fac29782e01',
# 'employee_name': 'Dennis Campbell', 'employee address':
# '52418 Diana Mills Suite 590\nEast Mackenzie, HI 16222', 'email_address':
# 'jennifer39@gmail.com'}, {'employee_id': '80bf12ff-2f3a-6db6-f3a6-14cb50076a46',
# 'employee_name': 'Jimmy Avery', 'employee address':
# '6867 Eddie Forest Apt. 735\nBranditon, IL 32717', 'email_address': 'ashley64@griffin.com'}]
BYOP (Bring Your Own Provider) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you are using a community provider or you created your own provider,
you can use those with faker-schema as well. I will use the provider,
faker\_web <https://github.com/thiagofigueiro/faker_web>
__ as an
example.
After installing <https://github.com/thiagofigueiro/faker_web#usage>
__
faker_web,
.. code:: python
from faker import Faker
from faker_schema import FakerSchema
from faker_web import WebProvider
fake = Faker()
fake.add_provider(WebProvider)
faker = FakerSchema(faker=fake)
headers_schema = {'Content-Type': 'content_type', 'Server': 'server_token'}
fake_headers = faker.generate_fake(headers_schema)
print(fake_headers)
# {'Content-Type': 'application/json', 'Server': 'Apache/2.0.51 (Ubuntu)'}
Running tests
- Using make
.. code:: bash
make test
- Using nose
.. code:: bash
nosetests
- Using nose with coverage
.. code:: bash
nosetests --with-coverage --cover-package=faker_schema --cover-erase -v --cover-html
Running flake8
.. code:: bash
make flake8
.. code:: bash
flake8 --max-line-length 99 faker_schema/ tests/
Usman Ehtesham Gul (ueg1990 <https://github.com/ueg1990>
__) -
uehtesham90@gmail.com
If you want to add any new features, or improve existing one or if you find bugs, please open a GitHub issue or feel free to send a pull request. If you have any questions or need help/mentoring with contributions, feel free to contact me via email
FAQs
Generate fake data using joke2k's faker and your own schema
We found that faker-schema demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover how browser extensions in trusted stores are used to hijack sessions, redirect traffic, and manipulate user behavior.
Research
Security News
An in-depth analysis of credential stealers, crypto drainers, cryptojackers, and clipboard hijackers abusing open source package registries to compromise Web3 development environments.
Security News
pnpm 10.12.1 introduces a global virtual store for faster installs and new options for managing dependencies with version catalogs.