Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

fast-langdetect

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

fast-langdetect

Quickly detect text language and segment language

  • 0.2.4
  • PyPI
  • Socket score

Maintainers
1

fast-langdetect 🚀

PyPI version Downloads Downloads

Overview

fast-langdetect is an ultra-fast and highly accurate language detection library based on FastText, a library developed by Facebook. Its incredible speed and accuracy make it 80x faster than conventional methods and deliver up to 95% accuracy.

  • Supported Python 3.9 to 3.12.
  • Works offline in low memory mode
  • No numpy required (thanks to @dalf).

Background

This project builds upon zafercavdar/fasttext-langdetect with enhancements in packaging. For more information about the underlying model, see the official FastText documentation: Language Identification.

Possible memory usage

This library requires at least 200MB memory in low-memory mode.

Installation 💻

To install fast-langdetect, you can use either pip or pdm:

Using pip

pip install fast-langdetect

Using pdm

pdm add fast-langdetect

Usage 🖥️

In scenarios where accuracy is important, you should not rely on the detection results of small models, use low_memory=False to download larger models!

Prerequisites

  • The “/n” character in the argument string must be removed before calling the function.
  • If the sample is too long or too short, the accuracy will be reduced (e.g. if it is too short, Chinese will be predicted as Japanese).
  • The model will be downloaded to the /tmp/fasttext-langdetect directory upon first use.
from fast_langdetect import detect, detect_multilingual

# Single language detection
print(detect("Hello, world!"))
# Output: {'lang': 'en', 'score': 0.12450417876243591}

# `use_strict_mode` determines whether the model loading process should enforce strict conditions before using fallback options.
# If `use_strict_mode` is set to True, we will load only the selected model, not the fallback model.
print(detect("Hello, world!", low_memory=False, use_strict_mode=True))

# How to deal with multiline text
multiline_text = """
Hello, world!
This is a multiline text.
But we need remove `\n` characters or it will raise an ValueError.
REMOVE \n
"""
multiline_text = multiline_text.replace("\n", "")  
print(detect(multiline_text))
# Output: {'lang': 'en', 'score': 0.8509423136711121}

print(detect("Привет, мир!")["lang"])
# Output: ru

# Multi-language detection with low memory mode enabled
# The accuracy is not as good as it should be
print(detect_multilingual("Hello, world!你好世界!Привет, мир!"))
# Output: [{'lang': 'ja', 'score': 0.32009604573249817}, {'lang': 'uk', 'score': 0.27781224250793457}, {'lang': 'zh', 'score': 0.17542070150375366}, {'lang': 'sr', 'score': 0.08751443773508072}, {'lang': 'bg', 'score': 0.05222449079155922}]

# Multi-language detection with low memory mode disabled
print(detect_multilingual("Hello, world!你好世界!Привет, мир!", low_memory=False))
# Output: [{'lang': 'ru', 'score': 0.39008623361587524}, {'lang': 'zh', 'score': 0.18235979974269867}, {'lang': 'ja', 'score': 0.08473210036754608}, {'lang': 'sr', 'score': 0.057975586503744125}, {'lang': 'en', 'score': 0.05422825738787651}]
Fallbacks

We provide a fallback mechanism: when use_strict_mode=False, if the program fails to load the large model (low_memory=False), it will fall back to the offline small model to complete the prediction task.

Convenient detect_language Function

from fast_langdetect import detect_language

# Single language detection
print(detect_language("Hello, world!"))
# Output: EN

print(detect_language("Привет, мир!"))
# Output: RU

print(detect_language("你好,世界!"))
# Output: ZH

Splitting Text by Language 🌐

For text splitting based on language, please refer to the split-lang repository.

Benchmark 📊

For detailed benchmark results, refer to zafercavdar/fasttext-langdetect#benchmark.

References 📚

[1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification

@article{joulin2016bag,
  title={Bag of Tricks for Efficient Text Classification},
  author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
  journal={arXiv preprint arXiv:1607.01759},
  year={2016}
}

[2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models

@article{joulin2016fasttext,
  title={FastText.zip: Compressing text classification models},
  author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
  journal={arXiv preprint arXiv:1612.03651},
  year={2016}
}

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc