
Security News
NVD Quietly Sweeps 100K+ CVEs Into a “Deferred” Black Hole
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
fasttext-langdetect-wheel
Advanced tools
This library is a wrapper for the language detection model trained on fasttext by Facebook. For more information, please visit: https://fasttext.cc/docs/en/language-identification.html
af als am an ar arz as ast av az azb ba bar bcl be bg bh bn bo bpy br bs bxr ca cbk ce cebckb co cs cv cy da de diq dsb dty dv el eml en eo es et eu fa fi fr frr fy ga gd gl gn gom gu gv he hi hif hr hsb ht hu hy ia id ie ilo io is it ja jbo jv ka kk km kn ko krc ku kv kw ky la lb lez li lmo lo lrc lt lv mai mg mhr min mk ml mn mr mrj ms mt mwl my myv mzn nah nap nds ne new nl nn no oc or os pa pam pfl pl pms pnb ps pt qu rm ro ru rue sa sah sc scn sco sd sh si sk sl so sq sr su sv sw ta te tg th tk tl tr tt tyv ug uk ur uz vec vep vi vls vo wa war wuu xal xmf yi yo yue zh
pip install fasttext-langdetect-wheel
detect
method expects UTF-8 data. low_memory
option enables getting predictions with the compressed version of the fasttext model by sacrificing the accuracy a bit.
from ftlangdetect import detect
result = detect(text="Bugün hava çok güzel", low_memory=False)
print(result)
> {'lang': 'tr', 'score': 1.00}
result = detect(text="Bugün hava çok güzel", low_memory=True)
print(result)
> {'lang': 'tr', 'score': 0.9982126951217651}
We benchmarked the fasttext model against cld2, langid, and langdetect on Wili-2018 dataset.
fasttext | langid | langdetect | cld2 | |
---|---|---|---|---|
Average time (ms) | 0,158273381 | 1,726618705 | 12,44604317 | 0,028776978 |
139 langs - not weighted | 76,8 | 61,6 | 37,6 | 80,8 |
139 langs - pop weighted | 95,5 | 93,1 | 86,6 | 92,7 |
44 langs - not weighted | 93,3 | 89,2 | 81,6 | 91,5 |
44 langs - pop weighted | 96,6 | 94,8 | 89,4 | 93,4 |
pop weighted
means recall for each language is multipled by its number of speakers.lang | cld2 | fasttext | langdetect | langid |
---|---|---|---|---|
Afrikaans | 0,94 | 0,918 | 0,992 | 0,966 |
Albanian | 0,958 | 0,966 | 0,964 | 0,954 |
Amharic | 0,976 | 0,982 | 0 | 0,982 |
Arabic | 0,994 | 0,998 | 0,998 | 0,996 |
Aragonese | 0 | 0,43 | 0 | 0,788 |
Armenian | 0,966 | 0,972 | 0 | 0,968 |
Assamese | 0,946 | 0,956 | 0 | 0,14 |
Avar | 0 | 0,626 | 0 | 0 |
Aymara | 0,596 | 0 | 0 | 0 |
Azerbaijani | 0,97 | 0,988 | 0 | 0,984 |
Bashkir | 0,97 | 0,97 | 0 | 0 |
Basque | 0,978 | 0,99 | 0 | 0,962 |
Belarusian | 0,94 | 0,97 | 0 | 0,964 |
Bengali | 0,898 | 0,922 | 0,904 | 0,942 |
Bhojpuri | 0,716 | 0,15 | 0 | 0 |
Bokmål | 0,852 | 0,966 | 0,976 | 0,95 |
Bosnian | 0,422 | 0,108 | 0 | 0,054 |
Breton | 0,946 | 0,974 | 0 | 0,976 |
Bulgarian | 0,892 | 0,964 | 0,964 | 0,942 |
Burmese | 0,998 | 0,998 | 0 | 0 |
Catalan | 0,882 | 0,95 | 0,93 | 0,928 |
Central Khmer | 0,876 | 0,878 | 0 | 0,876 |
Chechen | 0 | 0,99 | 0 | 0 |
Chuvash | 0 | 0,96 | 0 | 0 |
Cornish | 0 | 0,792 | 0 | 0 |
Corsican | 0,88 | 0,016 | 0 | 0 |
Croatian | 0,688 | 0,806 | 0,982 | 0,932 |
Czech | 0,978 | 0,986 | 0,984 | 0,982 |
Danish | 0,886 | 0,958 | 0,95 | 0,896 |
Dhivehi | 0,996 | 0,998 | 0 | 0 |
Dutch | 0,9 | 0,978 | 0,968 | 0,97 |
English | 0,992 | 1 | 0,998 | 0,986 |
Esperanto | 0,936 | 0,978 | 0 | 0,948 |
Estonian | 0,918 | 0,952 | 0,948 | 0,932 |
Faroese | 0,912 | 0 | 0 | 0,618 |
Finnish | 0,988 | 0,998 | 0,998 | 0,994 |
French | 0,946 | 0,996 | 0,99 | 0,992 |
Galician | 0,89 | 0,912 | 0 | 0,93 |
Georgian | 0,974 | 0,976 | 0 | 0,976 |
German | 0,958 | 0,984 | 0,978 | 0,978 |
Guarani | 0,968 | 0,728 | 0 | 0 |
Gujarati | 0,932 | 0,932 | 0,93 | 0,932 |
Haitian Creole | 0,988 | 0,536 | 0 | 0,99 |
Hausa | 0,976 | 0 | 0 | 0 |
Hebrew | 0,994 | 0,996 | 0,998 | 0,998 |
Hindi | 0,982 | 0,984 | 0,982 | 0,972 |
Hungarian | 0,96 | 0,988 | 0,968 | 0,986 |
Icelandic | 0,984 | 0,996 | 0 | 0,996 |
Ido | 0 | 0,76 | 0 | 0 |
Igbo | 0,798 | 0 | 0 | 0 |
Indonesian | 0,88 | 0,946 | 0,958 | 0,836 |
Interlingua | 0,27 | 0,688 | 0 | 0 |
Interlingue | 0,198 | 0,192 | 0 | 0 |
Irish | 0,968 | 0,978 | 0 | 0,984 |
Italian | 0,866 | 0,948 | 0,932 | 0,936 |
Japanese | 0,97 | 0,986 | 0,98 | 0,986 |
Javanese | 0 | 0,864 | 0 | 0,938 |
Kannada | 0,998 | 0,998 | 0,998 | 0,998 |
Kazakh | 0,978 | 0,992 | 0 | 0,916 |
Kinyarwanda | 0,86 | 0 | 0 | 0,44 |
Kirghiz | 0,974 | 0,99 | 0 | 0,408 |
Komi | 0 | 0,544 | 0 | 0 |
Korean | 0,986 | 0,99 | 0,988 | 0,99 |
Kurdish | 0 | 0,972 | 0 | 0,976 |
Lao | 0,84 | 0,842 | 0 | 0,85 |
Latin | 0,778 | 0,864 | 0 | 0,854 |
Latvian | 0,98 | 0,992 | 0,992 | 0,99 |
Limburgan | 0 | 0,324 | 0 | 0 |
Lingala | 0,85 | 0 | 0 | 0 |
Lithuanian | 0,96 | 0,976 | 0,974 | 0,97 |
Luganda | 0,952 | 0 | 0 | 0 |
Luxembourgish | 0,864 | 0,894 | 0 | 0,93 |
Macedonian | 0,88 | 0,984 | 0,982 | 0,974 |
Malagasy | 0,99 | 0,99 | 0 | 0,988 |
Malay | 0,896 | 0,586 | 0 | 0,39 |
Malayalam | 0,988 | 0,988 | 0,988 | 0,988 |
Maltese | 0,962 | 0,966 | 0 | 0,964 |
Manx | 0,972 | 0,294 | 0 | 0 |
Maori | 0,994 | 0 | 0 | 0 |
Marathi | 0,958 | 0,966 | 0,964 | 0,942 |
Modern Greek | 0,99 | 0,992 | 0,99 | 0,992 |
Mongolian | 0,964 | 0,994 | 0 | 0,996 |
Navajo | 0 | 0 | 0 | 0 |
Nepali (macrolanguage) | 0,96 | 0,98 | 0,978 | 0,922 |
Northern Sami | 0 | 0 | 0 | 0,866 |
Norwegian Nynorsk | 0,94 | 0,79 | 0 | 0,796 |
Occitan | 0,66 | 0,48 | 0 | 0,724 |
Oriya | 0,96 | 0,958 | 0 | 0,96 |
Oromo | 0,956 | 0 | 0 | 0 |
Ossetian | 0 | 0,938 | 0 | 0 |
Panjabi | 0,994 | 0,994 | 0,994 | 0,994 |
Persian | 0,992 | 0,998 | 0,996 | 0,998 |
Polish | 0,982 | 0,998 | 0,998 | 0,992 |
Portuguese | 0,908 | 0,956 | 0,946 | 0,952 |
Pushto | 0,938 | 0,922 | 0 | 0,754 |
Quechua | 0,926 | 0,808 | 0 | 0,852 |
Romanian | 0,932 | 0,986 | 0,984 | 0,984 |
Romansh | 0,934 | 0,328 | 0 | 0 |
Russian | 0,728 | 0,986 | 0,984 | 0,988 |
Sanskrit | 0,964 | 0,976 | 0 | 0 |
Sardinian | 0 | 0,01 | 0 | 0 |
Scottish Gaelic | 0,964 | 0,942 | 0 | 0 |
Serbian | 0,942 | 0,946 | 0 | 0,902 |
Serbo-Croatian | 0 | 0,402 | 0 | 0 |
Shona | 0,844 | 0 | 0 | 0 |
Sindhi | 0,978 | 0,982 | 0 | 0 |
Sinhala | 0,962 | 0,962 | 0 | 0,962 |
Slovak | 0,964 | 0,974 | 0,982 | 0,97 |
Slovene | 0,876 | 0,966 | 0,968 | 0,946 |
Somali | 0,924 | 0,696 | 0,956 | 0 |
Spanish | 0,894 | 0,986 | 0,976 | 0,98 |
Standard Chinese | 0,946 | 0,984 | 0,746 | 0,978 |
Sundanese | 0,91 | 0,854 | 0 | 0 |
Swahili (macrolanguage) | 0,924 | 0,92 | 0,938 | 0,934 |
Swedish | 0,872 | 0,994 | 0,992 | 0,986 |
Tagalog | 0,928 | 0,972 | 0,974 | 0,964 |
Tajik | 0,82 | 0,85 | 0 | 0 |
Tamil | 0,992 | 0,992 | 0,992 | 0,994 |
Tatar | 0,978 | 0,984 | 0 | 0 |
Telugu | 0,958 | 0,958 | 0,958 | 0,96 |
Thai | 0,988 | 0,988 | 0,988 | 0,988 |
Tibetan | 0,986 | 0,992 | 0 | 0 |
Tongan | 0,968 | 0 | 0 | 0 |
Tswana | 0,928 | 0 | 0 | 0 |
Turkish | 0,968 | 0,986 | 0,982 | 0,976 |
Turkmen | 0,94 | 0,936 | 0 | 0 |
Uighur | 0,978 | 0,986 | 0 | 0,964 |
Ukrainian | 0,97 | 0,988 | 0,986 | 0,986 |
Urdu | 0,86 | 0,958 | 0,89 | 0,896 |
Uzbek | 0,984 | 0,99 | 0 | 0 |
Vietnamese | 0,978 | 0,986 | 0,984 | 0,984 |
Volapük | 0,994 | 0,982 | 0 | 0,986 |
Walloon | 0 | 0,664 | 0 | 0,98 |
Welsh | 0,98 | 0,992 | 0,992 | 0,984 |
Western Frisian | 0,888 | 0,956 | 0 | 0 |
Wolof | 0,926 | 0 | 0 | 0 |
Xhosa | 0,928 | 0 | 0 | 0,912 |
Yiddish | 0,956 | 0,958 | 0 | 0 |
Yoruba | 0,75 | 0,262 | 0 | 0 |
[1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification
@article{joulin2016bag,
title={Bag of Tricks for Efficient Text Classification},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
journal={arXiv preprint arXiv:1607.01759},
year={2016}
}
[2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models
@article{joulin2016fasttext,
title={FastText.zip: Compressing text classification models},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
journal={arXiv preprint arXiv:1612.03651},
year={2016}
}
FAQs
80x faster and 95% accurate language identification with Fasttext
We found that fasttext-langdetect-wheel demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
Research
Security News
Lazarus-linked threat actors expand their npm malware campaign with new RAT loaders, hex obfuscation, and over 5,600 downloads across 11 packages.
Security News
Safari 18.4 adds support for Iterator Helpers and two other TC39 JavaScript features, bringing full cross-browser coverage to key parts of the ECMAScript spec.