
Research
/Security News
Critical Vulnerability in NestJS Devtools: Localhost RCE via Sandbox Escape
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
feature-selection-lofo
Advanced tools
Leave One Feature Out (LOFO) is on of the most powerful techniques for feature selection.
This repository contains the implementation of LOFO in Python and can be used with any model of the followings:
pip install feature-selection-lofo
from feature_selection_lofo import lofo
lofo.LOFO(X, Y,
model,
cv,
metric,
direction,
fit_params=None,
predict_type='predict',
return_bad_feats=False,
groups=None,
is_keras_model=False)
Args | |
---|---|
X | Pandas DataFrame, input features to the model (predictors). |
Y | array_like, target/label feature. |
model | object, the model class (e.g. sklearn.linear_model.LinearRegression()). |
cv | object, sklearn cross validatoin object (e.g. sklearn.model_selection.KFold(n_splits=5, shuffle=True, random_state=0)). |
metric | object, metric to use during search (e.g. sklearn.metrics.roc_auc_score). |
direction | string, direction of optimization ('max' or 'min'). |
fit_params | string, parameters to use for fitting (e.g. "{'X': x_train, 'y': y_train}") . Defaults to "{'X': x_train, 'y': y_train}". |
predict_type | string, ('predict' or 'predict_proba'). Defaults to 'predict'. |
return_bad_feats | boolean, whether to return a list of bad features. Defaults to False. |
groups | array_like, used with StratifiedGroupKFold. Defaults to None. |
is_keras_model | boolean, whether the model passed is Keras model. Defaults to False. |
Returns |
---|
A Pandas DataFrame with harmful features removed. |
If return_bad_feats is set to True, it returns a list of the harmful features. |
import warnings
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LogisticRegression
# shutdown warning messages
warnings.filterwarnings('ignore')
X = train_df.iloc[:, :-1]
Y = train_df.iloc[:, -1]
model = LogisticRegression()
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
metric = roc_auc_score
direction = 'max'
fit_params = "{'X': x_train, 'y': y_train}"
predict_type = 'predict_proba'
return_bad_feats = True
groups = None
is_keras_model = False
lofo_object = lofo.LOFO(X, Y, model, cv, metric, direction, fit_params,
predict_type, return_bad_feats, groups, is_keras_model)
clean_X, bad_feats = lofo_object()
clean_X: is the dataset containing the useful features only.
bad_feats: are the harmful or useless features.
import warnings
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
import lightgbm as lgbm
# shutdown warning messages
warnings.filterwarnings('ignore')
X = train_df.iloc[:, :-1]
Y = train_df.iloc[:, -1]
model= lgbm.LGBMClassifier(
objective='binary',
metric='auc',
subsample=0.7,
learning_rate=0.03,
n_estimators=100,
n_jobs=-1)
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
metric = roc_auc_score
direction = 'max'
fit_params = "{'X': x_train, 'y': y_train, 'eval_set': [(x_valid,y_valid)], 'verbose': 0}"
predict_type = 'predict_proba'
return_bad_feats = True
groups = None
is_keras_model = False
lofo_object = lofo.LOFO(X, Y, model, cv, metric, direction, fit_params,
predict_type, return_bad_feats, groups, is_keras_model)
clean_X, bad_feats = lofo_object()
import warnings
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
import tensorflow as tf
from tensorflow.keras import layers
def nn_model():
inputs = layers.Input(shape=X.shape[-1],)
x = layers.Dense(256, activation='relu')(inputs)
x = layers.Dense(64, activation='relu')(x)
output = layers.Dense(1, activation='sigmoid')(x)
model = tf.keras.Model(inputs=inputs, outputs=output)
model.compile(loss='binary_crossentropy',
optimizer='adam',)
return model
# shutdown warning messages
warnings.filterwarnings('ignore')
X = train_df.iloc[:, :-1]
Y = train_df.iloc[:, -1]
tf.keras.backend.clear_session()
model = nn_model()
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
metric = roc_auc_score
direction = 'max'
fit_params = "{'x': x_train, 'y': y_train, 'validation_data': (x_valid, y_valid), 'epochs': 10, 'batch_size': 256, 'verbose': 0}"
predict_type = 'predict'
return_bad_feats = True
groups = None
is_keras_model = True
lofo_object = lofo.LOFO(X, Y, model, cv, metric, direction, fit_params,
predict_type, return_bad_feats, groups, is_keras_model)
clean_X, bad_feats = lofo_object()
FAQs
This is an implementation of LOFO for automatic feature selection.
We found that feature-selection-lofo demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
/Security News
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
Product
Customize license detection with Socket’s new license overlays: gain control, reduce noise, and handle edge cases with precision.
Product
Socket now supports Rust and Cargo, offering package search for all users and experimental SBOM generation for enterprise projects.