You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

feature-selection-lofo

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

feature-selection-lofo

This is an implementation of LOFO for automatic feature selection.

0.0.6
pipPyPI
Maintainers
1

LOFO

Leave One Feature Out (LOFO) is on of the most powerful techniques for feature selection.

This repository contains the implementation of LOFO in Python and can be used with any model of the followings:

  • Any Scikit-Learn model.
  • Any TensorFlow/Keras model.
  • LightGBM.
  • CatBoost.
  • XGBoost.

Usage

  • Install the package:
pip install feature-selection-lofo
  • Import lofo
from feature_selection_lofo import lofo
lofo.LOFO(X, Y, 
          model, 
          cv, 
          metric, 
          direction, 
          fit_params=None, 
          predict_type='predict', 
          return_bad_feats=False, 
          groups=None,
          is_keras_model=False)
Args
XPandas DataFrame, input features to the model (predictors).
Yarray_like, target/label feature.
modelobject, the model class (e.g. sklearn.linear_model.LinearRegression()).
cvobject, sklearn cross validatoin object (e.g. sklearn.model_selection.KFold(n_splits=5, shuffle=True, random_state=0)).
metricobject, metric to use during search (e.g. sklearn.metrics.roc_auc_score).
directionstring, direction of optimization ('max' or 'min').
fit_paramsstring, parameters to use for fitting (e.g. "{'X': x_train, 'y': y_train}") . Defaults to "{'X': x_train, 'y': y_train}".
predict_typestring, ('predict' or 'predict_proba'). Defaults to 'predict'.
return_bad_featsboolean, whether to return a list of bad features. Defaults to False.
groupsarray_like, used with StratifiedGroupKFold. Defaults to None.
is_keras_modelboolean, whether the model passed is Keras model. Defaults to False.
Returns
A Pandas DataFrame with harmful features removed.
If return_bad_feats is set to True, it returns a list of the harmful features.
  • Import the needed libraries for your model, cross-validation, etc

Scikit-Learn Model Example

import warnings
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LogisticRegression
  • Define the paramters
# shutdown warning messages
warnings.filterwarnings('ignore')

X = train_df.iloc[:, :-1]
Y = train_df.iloc[:, -1]
model = LogisticRegression()
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
metric = roc_auc_score
direction = 'max'
fit_params = "{'X': x_train, 'y': y_train}"
predict_type = 'predict_proba'
return_bad_feats = True
groups = None
is_keras_model = False
  • Define the LOFO object and call it
lofo_object = lofo.LOFO(X, Y, model, cv, metric, direction, fit_params, 
                        predict_type, return_bad_feats, groups, is_keras_model)

clean_X, bad_feats = lofo_object()

clean_X: is the dataset containing the useful features only.

bad_feats: are the harmful or useless features.

LightGBM Model Example

import warnings
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
import lightgbm as lgbm
  • Define the paramters
# shutdown warning messages
warnings.filterwarnings('ignore')

X = train_df.iloc[:, :-1]
Y = train_df.iloc[:, -1]
model= lgbm.LGBMClassifier(
                       objective='binary',
                       metric='auc',
                       subsample=0.7,
                       learning_rate=0.03,
                       n_estimators=100,
                       n_jobs=-1)
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
metric = roc_auc_score
direction = 'max'
fit_params = "{'X': x_train, 'y': y_train, 'eval_set': [(x_valid,y_valid)], 'verbose': 0}"
predict_type = 'predict_proba'
return_bad_feats = True
groups = None
is_keras_model = False
  • Define the LOFO object and call it
lofo_object = lofo.LOFO(X, Y, model, cv, metric, direction, fit_params, 
                        predict_type, return_bad_feats, groups, is_keras_model)
clean_X, bad_feats = lofo_object()

TensorFlow/Keras Model Example

import warnings
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
import tensorflow as tf
from tensorflow.keras import layers
  • Construct the model
def nn_model():
    inputs = layers.Input(shape=X.shape[-1],)
    x = layers.Dense(256, activation='relu')(inputs)
    x = layers.Dense(64, activation='relu')(x)
    output = layers.Dense(1, activation='sigmoid')(x)
    
    model = tf.keras.Model(inputs=inputs, outputs=output)
    model.compile(loss='binary_crossentropy',
              optimizer='adam',)
    
    return model
  • Define the paramters
# shutdown warning messages
warnings.filterwarnings('ignore')

X = train_df.iloc[:, :-1]
Y = train_df.iloc[:, -1]

tf.keras.backend.clear_session()
model = nn_model()

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
metric = roc_auc_score
direction = 'max'
fit_params = "{'x': x_train, 'y': y_train, 'validation_data': (x_valid, y_valid), 'epochs': 10, 'batch_size': 256, 'verbose': 0}"
predict_type = 'predict'
return_bad_feats = True
groups = None
is_keras_model = True
  • Define the LOFO object and call it
lofo_object = lofo.LOFO(X, Y, model, cv, metric, direction, fit_params, 
                        predict_type, return_bad_feats, groups, is_keras_model)

clean_X, bad_feats = lofo_object()

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts