🚀 Socket Launch Week 🚀 Day 2: Introducing Repository Labels and Security Policies.Learn More

ffzf

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ffzf

0.2.6
Maintainers
1

ffzf

Fast fuzzy string matching for Python.

Installation

pip install ffzf

Usage

# Find closest string matching
from ffzf import closest
best_match = closest("hello", ["harps", "apples", "jello"])

# Find n best matches
from ffzf import n_closest
best_matches = n_closest("hello", ["harps", "apples", "jello"], 2)

from ffzf import JAROWINKLER
# Specify an algorithm (default is levenshtein distance)
best_match = closest("hello", ["harps", "apples", "jello"], algorithm=JAROWINKLER)

# Call algorithm directly
from ffzf import levenshtein_distance
dist = levenshtein_distance("hello", "jello")

# Case sensitive comparison (default is case insensitive)
dist = levenshtein_distance("Hello", "hello", case_sensitive=True)
best_match = closest("Hello", ["harps", "apples", "jello"], case_sensitive=True)

# Remove whitespace (default is to keep the whitespace in strings)
dist = levenshtein_distance("hello world", "helloworld", remove_whitespace=True)

# Return scores with closest results
from ffzf import n_closest_with_score
best_matches = n_closest_with_score("hello", ["harps", "apples", "jello"], 2)

Supported Algorithms

  • Levenshtein Distance (default)
  • Jaro Similarity ("JARO")
  • Jaro-Winkler Similarity ("JAROWINKLER")
  • Hamming Distance ("HAMMING")

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts