Socket
Book a DemoInstallSign in
Socket

formalmath

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

formalmath

A modular formal mathematics systems library, including Metamath

0.1.1
pipPyPI
Maintainers
1

Formal mathematics package on python

Formal mathematics package on python.

Support a proof check system core equivalent to metamath

Install

pip install formalmath

Example use

Here is an example for propositional logic.

from formalmath.metamath import FormalSystem

# 1. Define constants in the system.
constants = ['wff', '->', '|-', '(', ')', '-.']

# 2. Define axioms.
axioms = {
    'wi': {
        'd': {},
        't': {
            'wph': 'wff ph',
            'wps': 'wff ps'
        },
        'h': {},
        'a': 'wff ( ph -> ps )'
    },
    'wn': {
        'd': {},
        't': {
            'wph': 'wff ph'
        },
        'h': {},
        'a': 'wff -. ph'
    },
    'ax-1': {
        'd': {},
        't': {
            'wph': 'wff ph',
            'wps': 'wff ps'
        },
        'h': {},
        'a': '|- ( ph -> ( ps -> ph ) )'
    },
    'ax-2': {
        'd': {},
        't': {
            'wph': 'wff ph',
            'wps': 'wff ps',
            'wch': 'wff ch'
        },
        'h': {},
        'a': '|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )'
    },
    'ax-3': {
        'd': {},
        't': {
            'wph': 'wff ph',
            'wps': 'wff ps'
        },
        'h': {},
        'a': '|- ( ( -. ph -> -. ps ) -> ( ps -> ph ) )'
    },
    'ax-mp': {
        'd': {},
        't': {
            'wph': 'wff ph',
            'wps': 'wff ps'
        },
        'h': {
            'min': '|- ph',
            'maj': '|- ( ph -> ps )'
        },
        'a': '|- ps'
    }
}

# 3. Instantiate FormalSystem.
fs = FormalSystem(constants=constants, axioms=axioms, theorems={})

# 4. Write a new theorem for the system.
mp2 = {
    'd': {},
    't': {
        'wph': 'wff ph',
        'wps': 'wff ps',
        'wch': 'wff ch'
    },
    'h': {
        'mp2.1': '|- ph',
        'mp2.2': '|- ps',
        'mp2.3': '|- ( ph -> ( ps -> ch ) )'
    },
    'a': '|- ch',
    'p':[
        'wps',
        'wch',
        'mp2.2',
        'wph',
        'wps',
        'wch',
        'wi',
        'mp2.1',
        'mp2.3',
        'ax-mp',
        'ax-mp'
    ]
}

# 5. Check the proof steps of the previous theorem in the formal system.
trace = fs._proof_check(mp2, detailed=True)
for tr in trace:
    print(tr)

The output will be

Step 1: push type assumption 'wps' -> 'wff ps'
Step 2: push type assumption 'wch' -> 'wff ch'
Step 3: push hypothesis 'mp2.2' -> '|- ps'
Step 4: push type assumption 'wph' -> 'wff ph'
Step 5: push type assumption 'wps' -> 'wff ps'
Step 6: push type assumption 'wch' -> 'wff ch'
Step 7: apply axiom 'wi', pop ['wff ps', 'wff ch']
  match wph: type 'wff', var 'ph' -> 'ps'
  match wps: type 'wff', var 'ps' -> 'ch'
  conclude -> 'wff ( ps -> ch )' and push to stack
Step 8: push hypothesis 'mp2.1' -> '|- ph'
Step 9: push hypothesis 'mp2.3' -> '|- ( ph -> ( ps -> ch ) )'
Step 10: apply axiom 'ax-mp', pop ['wff ph', 'wff ( ps -> ch )', '|- ph', '|- ( ph -> ( ps -> ch ) )']
  match wph: type 'wff', var 'ph' -> 'ph'
  match wps: type 'wff', var 'ps' -> '( ps -> ch )'
  hypothesis min matches '|- ph'
  hypothesis maj matches '|- ( ph -> ( ps -> ch ) )'
  conclude -> '|- ( ps -> ch )' and push to stack
Step 11: apply axiom 'ax-mp', pop ['wff ps', 'wff ch', '|- ps', '|- ( ps -> ch )']
  match wph: type 'wff', var 'ph' -> 'ps'
  match wps: type 'wff', var 'ps' -> 'ch'
  hypothesis min matches '|- ps'
  hypothesis maj matches '|- ( ps -> ch )'
  conclude -> '|- ch' and push to stack
Proof successfully concludes with assertion '|- ch'

Keywords

formal system

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.