🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

format-flex

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

format-flex

A flexible Python library for easy handling and conversion of Hierarchical, Tabular, and Serialized data formats.

0.0.3
PyPI
Maintainers
1

FormatFlex

FormatFlex is a flexible Python library designed to seamlessly handle various text and data formats.

Supported Data Formats

Hierarchical Data (HData)

  • XML
  • JSON
  • YAML
  • TOML
  • CBOR2
  • MSGPACK
  • BSON
  • UBJSON

Tabular Data (TData)

  • CSV
  • Excel
  • Parquet
  • ORC
  • Feather
  • HDF5

Serialization (GData)

  • Pickle
  • Dill
  • Cloudpickle
  • Joblib

Installation

pip install format_flex

Usage

Hierarchical Data Example (HData)

from format_flex import HData

with open("sample/sample.json", "rt", encoding="utf-8") as f:
    data = f.read()

hdata = HData(data)
save_path = "./output/hdata_example"

# Convert and save in various formats
print(hdata.to.xml(save_path).summary)
print(hdata.to.json(save_path).summary)
print(hdata.to.yaml(save_path).summary)
print(hdata.to.toml(save_path).summary)
print(hdata.to.bson(save_path).summary)
print(hdata.to.cbor2(save_path).summary)
print(hdata.to.msgpack(save_path).summary)
print(hdata.to.ubjson(save_path).summary)

Tabular Data Example (TData)

from format_flex import TData

tdata = TData("sample/music_dataset.csv")
save_path = "./output/tdata_example"

print(tdata.to.csv(save_path).summary)
print(tdata.to.excel(save_path).summary)
print(tdata.to.parquet(save_path).summary)
print(tdata.to.orc(save_path).summary)
print(tdata.to.feather(save_path).summary)
print(tdata.to.hdf5(save_path).summary)

Serialization Example (GData)

import numpy as np
from format_flex import GData

data = {
    "name": "Alice",
    "age": 30,
    "scores": [95, 87, 78],
    "numbers": np.random.random((10, 10)),
    "details": {
        "hobbies": ["reading", "cycling", "hiking"],
        "active": True,
        "balance": 1234.56
    }
}

save_path = "./output/gdata_example"
gdata = GData(data)

print(gdata.to.pickle(save_path).summary)
print(gdata.to.dill(save_path).summary)
print(gdata.to.cloudpickle(save_path).summary)
print(gdata.to.joblib(save_path).summary)

License

This project is licensed under the MIT License.

Keywords

python

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts