Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

frouros

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

frouros

An open-source Python library for drift detection in machine learning systems

  • 0.9.0
  • PyPI
  • Socket score

Maintainers
2

logo


ci coverage documentation downloads downloads pypi python bsd_3_license SoftwareX

Frouros is a Python library for drift detection in machine learning systems that provides a combination of classical and more recent algorithms for both concept and data drift detection.

"Everything changes and nothing stands still"

"You could not step twice into the same river"

Heraclitus of Ephesus (535-475 BCE.)


⚡️ Quickstart

🔄 Concept drift

As a quick example, we can use the breast cancer dataset to which concept drift it is induced and show the use of a concept drift detector like DDM (Drift Detection Method). We can see how concept drift affects the performance in terms of accuracy.

import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

from frouros.detectors.concept_drift import DDM, DDMConfig
from frouros.metrics import PrequentialError

np.random.seed(seed=31)

# Load breast cancer dataset
X, y = load_breast_cancer(return_X_y=True)

# Split train (70%) and test (30%)
(
    X_train,
    X_test,
    y_train,
    y_test,
) = train_test_split(X, y, train_size=0.7, random_state=31)

# Define and fit model
pipeline = Pipeline(
    [
        ("scaler", StandardScaler()),
        ("model", LogisticRegression()),
    ]
)
pipeline.fit(X=X_train, y=y_train)

# Detector configuration and instantiation
config = DDMConfig(
    warning_level=2.0,
    drift_level=3.0,
    min_num_instances=25,  # minimum number of instances before checking for concept drift
)
detector = DDM(config=config)

# Metric to compute accuracy
metric = PrequentialError(alpha=1.0)  # alpha=1.0 is equivalent to normal accuracy

def stream_test(X_test, y_test, y, metric, detector):
    """Simulate data stream over X_test and y_test. y is the true label."""
    drift_flag = False
    for i, (X, y) in enumerate(zip(X_test, y_test)):
        y_pred = pipeline.predict(X.reshape(1, -1))
        error = 1 - (y_pred.item() == y.item())
        metric_error = metric(error_value=error)
        _ = detector.update(value=error)
        status = detector.status
        if status["drift"] and not drift_flag:
            drift_flag = True
            print(f"Concept drift detected at step {i}. Accuracy: {1 - metric_error:.4f}")
    if not drift_flag:
        print("No concept drift detected")
    print(f"Final accuracy: {1 - metric_error:.4f}\n")

# Simulate data stream (assuming test label available after each prediction)
# No concept drift is expected to occur
stream_test(
    X_test=X_test,
    y_test=y_test,
    y=y,
    metric=metric,
    detector=detector,
)
# >> No concept drift detected
# >> Final accuracy: 0.9766

# IMPORTANT: Induce/simulate concept drift in the last part (20%)
# of y_test by modifying some labels (50% approx). Therefore, changing P(y|X))
drift_size = int(y_test.shape[0] * 0.2)
y_test_drift = y_test[-drift_size:]
modify_idx = np.random.rand(*y_test_drift.shape) <= 0.5
y_test_drift[modify_idx] = (y_test_drift[modify_idx] + 1) % len(np.unique(y_test))
y_test[-drift_size:] = y_test_drift

# Reset detector and metric
detector.reset()
metric.reset()

# Simulate data stream (assuming test label available after each prediction)
# Concept drift is expected to occur because of the label modification
stream_test(
    X_test=X_test,
    y_test=y_test,
    y=y,
    metric=metric,
    detector=detector,
)
# >> Concept drift detected at step 142. Accuracy: 0.9510
# >> Final accuracy: 0.8480

More concept drift examples can be found here.

📊 Data drift

As a quick example, we can use the iris dataset to which data drift is induced and show the use of a data drift detector like Kolmogorov-Smirnov test.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from frouros.detectors.data_drift import KSTest

np.random.seed(seed=31)

# Load iris dataset
X, y = load_iris(return_X_y=True)

# Split train (70%) and test (30%)
(
    X_train,
    X_test,
    y_train,
    y_test,
) = train_test_split(X, y, train_size=0.7, random_state=31)

# Set the feature index to which detector is applied
feature_idx = 0

# IMPORTANT: Induce/simulate data drift in the selected feature of y_test by
# applying some gaussian noise. Therefore, changing P(X))
X_test[:, feature_idx] += np.random.normal(
    loc=0.0,
    scale=3.0,
    size=X_test.shape[0],
)

# Define and fit model
model = DecisionTreeClassifier(random_state=31)
model.fit(X=X_train, y=y_train)

# Set significance level for hypothesis testing
alpha = 0.001
# Define and fit detector
detector = KSTest()
_ = detector.fit(X=X_train[:, feature_idx])

# Apply detector to the selected feature of X_test
result, _ = detector.compare(X=X_test[:, feature_idx])

# Check if drift is taking place
if result.p_value <= alpha:
    print(f"Data drift detected at feature {feature_idx}")
else:
    print(f"No data drift detected at feature {feature_idx}")
# >> Data drift detected at feature 0
# Therefore, we can reject H0 (both samples come from the same distribution).

More data drift examples can be found here.

🛠 Installation

Frouros can be installed via pip:

pip install frouros

🕵🏻‍♂️️ Drift detection methods

The currently implemented detectors are listed in the following table.

Drift detectorTypeFamilyUnivariate (U) / Multivariate (M)Numerical (N) / Categorical (C)MethodReference
Concept driftStreamingChange detectionUNBOCDAdams and MacKay (2007)
UNCUSUMPage (1954)
UNGeometric moving averageRoberts (1959)
UNPage HinkleyPage (1954)
Statistical process controlUNDDMGama et al. (2004)
UNECDD-WTRoss et al. (2012)
UNEDDMBaena-Garcıa et al. (2006)
UNHDDM-AFrias-Blanco et al. (2014)
UNHDDM-WFrias-Blanco et al. (2014)
UNRDDMBarros et al. (2017)
Window basedUNADWINBifet and Gavalda (2007)
UNKSWINRaab et al. (2020)
UNSTEPDNishida and Yamauchi (2007)
Data driftBatchDistance basedUNBhattacharyya distanceBhattacharyya (1946)
UNEarth Mover's distanceRubner et al. (2000)
UNEnergy distanceSzékely et al. (2013)
UNHellinger distanceHellinger (1909)
UNHistogram intersection normalized complementSwain and Ballard (1991)
UNJensen-Shannon distanceLin (1991)
UNKullback-Leibler divergenceKullback and Leibler (1951)
MNMaximum Mean DiscrepancyGretton et al. (2012)
UNPopulation Stability IndexWu and Olson (2010)
Statistical testUNAnderson-Darling testScholz and Stephens (1987)
UNBaumgartner-Weiss-Schindler testBaumgartner et al. (1998)
UCChi-square testPearson (1900)
UNCramér-von Mises testCramér (1902)
UNKolmogorov-Smirnov testMassey Jr (1951)
UNKuiper's testKuiper (1960)
UNMann-Whitney U testMann and Whitney (1947)
UNWelch's t-testWelch (1947)
StreamingDistance basedMNMaximum Mean DiscrepancyGretton et al. (2012)
Statistical testUNIncremental Kolmogorov-Smirnov testdos Reis et al. (2016)

❗ What is and what is not Frouros?

Unlike other libraries that in addition to provide drift detection algorithms, include other functionalities such as anomaly/outlier detection, adversarial detection, imbalance learning, among others, Frouros has and will ONLY have one purpose: drift detection.

We firmly believe that machine learning related libraries or frameworks should not follow Jack of all trades, master of none principle. Instead, they should be focused on a single task and do it well.

✅ Who is using Frouros?

Frouros is actively being used by the following projects to implement drift detection in machine learning pipelines:

If you want your project listed here, do not hesitate to send us a pull request.

👍 Contributing

Check out the contribution section.

💬 Citation

If you want to cite Frouros you can use the SoftwareX publication.

@article{CESPEDESSISNIEGA2024101733,
title = {Frouros: An open-source Python library for drift detection in machine learning systems},
journal = {SoftwareX},
volume = {26},
pages = {101733},
year = {2024},
issn = {2352-7110},
doi = {https://doi.org/10.1016/j.softx.2024.101733},
url = {https://www.sciencedirect.com/science/article/pii/S2352711024001043},
author = {Jaime {Céspedes Sisniega} and Álvaro {López García}},
keywords = {Machine learning, Drift detection, Concept drift, Data drift, Python},
abstract = {Frouros is an open-source Python library capable of detecting drift in machine learning systems. It provides a combination of classical and more recent algorithms for drift detection, covering both concept and data drift. We have designed it to be compatible with any machine learning framework and easily adaptable to real-world use cases. The library is developed following best development and continuous integration practices to ensure ease of maintenance and extensibility.}
}

📝 License

Frouros is an open-source software licensed under the BSD-3-Clause license.

🙏 Acknowledgements

Frouros has received funding from the Agencia Estatal de Investigación, Unidad de Excelencia María de Maeztu, ref. MDM-2017-0765.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc