Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Fuzzy Self-Tuning PSO (FST-PSO) is a swarm intelligence global optimization method [1] based on Particle Swarm Optimization [2].
FST-PSO is designed for the optimization of real-valued multi-dimensional multi-modal minimization problems.
FST-PSO is settings-free version of PSO which exploits fuzzy logic to dynamically assign the functioning parameters to each particle in the swarm. Specifically, during each generation, FST-PSO is determines the optimal choice for the cognitive factor, the social factor, the inertia value, the minimum velocity, and the maximum velocity. FST-PSO also uses an heuristics to choose the swarm size, so that the user must not select any functioning setting.
In order to use FST-PSO, the programmer must implement a custom fitness function. Moreover, the programmer must specify the number of dimensions of the problem and the boundaries of the search space for each dimension. The programmer can optionally specify the maximum number of iterations. When the stopping criterion is met, FST-PSO returns the best fitting solution found, along with its fitness value.
FST-PSO can be used as follows:
from fstpso import FuzzyPSO
def example_fitness( particle ):
return sum(map(lambda x: x**2, particle))
if name == 'main':
dims = 10
FP = FuzzyPSO( )
FP.set_search_space( [[-10, 10]]*dims )
FP.set_fitness(example_fitness)
result = FP.solve_with_fstpso()
print("Best solution:", result[0])
print("Whose fitness is:", result[1])
FST-PSO has been created by M.S. Nobile, D. Besozzi, G. Pasi, G. Mauri, R. Colombo (University of Milan-Bicocca, Italy), and P. Cazzaniga (University of Bergamo, Italy). The source code was written by M.S. Nobile.
FST-PSO requires two packages: miniful and numpy.
Further information on GITHUB: https://github.com/aresio/fst-pso
[1] Nobile, Cazzaniga, Besozzi, Colombo, Mauri, Pasi, "Fuzzy Self-Tuning PSO: A Settings-Free Algorithm for Global Optimization", Swarm & Evolutionary Computation, 39:70-85, 2018 (doi:10.1016/j.swevo.2017.09.001)
[2] Kennedy, Eberhart, Particle swarm optimization, in: Proceedings IEEE International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948
http://www.sciencedirect.com/science/article/pii/S2210650216303534
FAQs
Fuzzy Self-Tuning PSO global optimization library
We found that fst-pso demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.