šŸš€ Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more →
Socket
Sign inDemoInstall
Socket

funkyheatmappy

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

funkyheatmappy

Generate heatmap-like visualisations for benchmark data frames.

0.7.0
Source
PyPI
Maintainers
2

image

Funkyheatmappy

Funkyheatmap in Python: Generating Funky Heatmaps for Data Frames

Installation

You can install funkyheatmappy from GitHub using the following command:

pip install funkyheatmappy

Usage

We use the mtcars dataset to demonstrate the usage of the funkyheatmappy package.

import funkyheatmappy
import pandas as pd

mtcars = pd.read_csv("./test/data/mtcars.csv")

You can visualise the dataset as follows:

mtcars = mtcars.rename(columns={"Unnamed: 0": "id"})

funkyheatmappy.funky_heatmap(mtcars)

However, it's easy to add some more information and style the plot better:

column_lists = [
  ["id", "group", "name", "geom", "options", "palette"],
  ["id", np.nan, "", "text", {"ha": 0, "width": 6}, np.nan],
  ["mpg", "overall", "Miles / gallon", "bar", {"width": 4, "legend": False}, "palette1"],
  ["cyl", "overall", "Number of cylinders", "bar", {"width": 4, "legend": False}, "palette2"],
  ["disp", "group1", "Displacement (cu.in.)", "funkyrect", dict(), "palette1"],
  ["hp", "group1", "Gross horsepower", "funkyrect", dict(), "palette1"],
  ["drat", "group1", "Rear axle ratio", "funkyrect", dict(), "palette1"],
  ["wt", "group1", "Weight (1000 lbs)", "funkyrect", dict(), "palette1"],
  ["qsec", "group2", "1/4 mile time", "circle", dict(), "palette2"],
  ["vs", "group2", "Engine", "circle", dict(), "palette2"],
  ["am", "group2", "Transmission", "circle", dict(), "palette2"],
  ["gear", "group2", "# Forward gears", "circle", dict(), "palette2"],
  ["carb", "group2", "# Carburetors", "circle", dict(), "palette2"],
]

column_info = pd.DataFrame(column_lists[1:], columns=column_lists[0])
column_info.index = column_info["id"]

column_groups = pd.DataFrame(columns=["Category", "group", "palette"],
                              data = [["Overall", "overall", "palette1"],
                                      ["Group1", "group1", "palette1"],
                                      ["Group2", "group2", "palette2"]]
                            )

funkyheatmappy.funky_heatmap(mtcars, column_info = column_info, column_groups = column_groups)

Documentation

Reference documentation is available at funkyheatmap.github.io/funkyheatmappy.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts