Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

funpredict

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

funpredict

Introducing Fun Predict, the ultimate time-saver for machine learning! No more complex coding or tedious parameter tuning - just sit back and let Fun Predict build your basic models with ease. It's like having a personal assistant for your machine learning projects, making the process simple, efficient, and, well, Fun! 🛋

  • 0.0.6
  • PyPI
  • Socket score

Maintainers
1

Fun Predict🤖

Fun Predict is a free, open-source Python library that helps you build and compare machine learning models easily, without writing much code. It allows you to quickly and easily evaluate a variety of models without having to write a lot of code or tune hyperparameters.

Installation

To install Fun Predict:


pip install funpredict

Usage

To use Fun Predict in a project:


import funpredict

Classification

Example :


from funpredict.fun_model import PlayClassifier

from sklearn.datasets import load_wine

from sklearn.model_selection import train_test_split



# Test with a Classification model

data = load_wine()

X,y = data.data,data.target



X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =42)



clf = PlayClassifier(verbose=0,ignore_warnings=True, custom_metric=None)

models,predictions = clf.fit(X_train, X_test, y_train, y_test,'multiclass')

# If you confirm which model working best then choose hare.

model_dictionary = clf.provide_models(X_train,X_test,y_train,y_test) 

print(models)



                                        | Accuracy | Balanced Accuracy| F1 Score | Time Taken |

     -----------------------------------------------------------------------------------------|

    | Model :                                                                                 |

    |                                    -----------------------------------------------------+

    | ExtraTreesClassifier              | 1.00     |  1.00            |   1.00    | 0.27      |

    | RandomForestClassifier            | 1.00     |  1.00            |   1.00    | 0.40      |

    | GaussianNB                        | 1.00     |  1.00            |   1.00    | 0.02      |

    | CatBoostClassifier                | 0.99     |  0.99            |   0.99    | 3.32      |

    | KNeighborsClassifier              | 0.99     |  0.99            |   0.99    | 0.03      |

    | RidgeClassifierCV                 | 0.99     |  0.99            |   0.99    | 0.02      |

    | PassiveAggressiveClassifier       | 0.99     |  0.99            |   0.99    | 0.04      |

    | LogisticRegression                | 0.99     |  0.99            |   0.99    | 0.03      |

    | NearestCentroid                   | 0.98     |  0.98            |   0.98    | 0.03      |

    | LGBMClassifier                    | 0.98     |  0.98            |   0.98    | 0.15      |

    | Perceptron                        | 0.98     |  0.98            |   0.98    | 0.04      |

    | SGDClassifier                     | 0.98     |  0.98            |   0.98    | 0.02      |

    | LinearDiscriminantAnalysis        | 0.98     |  0.98            |   0.98    | 0.02      |

    | LinearSVC                         | 0.98     |  0.98            |   0.98    | 0.02      |

    | RidgeClassifier                   | 0.98     |  0.98            |   0.98    | 0.02      |

    | NuSVC                             | 0.98     |  0.98            |   0.98    | 0.02      |

    | SVC                               | 0.98     |  0.98            |   0.98    | 0.02      |

    | LabelPropagation                  | 0.97     |  0.97            |   0.97    | 0.02      |

    | LabelSpreading                    | 0.97     |  0.97            |   0.97    | 0.02      |

    | XGBClassifier                     | 0.97     |  0.97            |   0.97    | 0.10      |

    | BaggingClassifier                 | 0.97     |  0.97            |   0.97    | 0.11      |

    | BernoulliNB                       | 0.94     |  0.94            |   0.94    | 0.04      |

    | CalibratedClassifierCV            | 0.94     |  0.94            |   0.94    | 0.15      |

    | AdaBoostClassifier                | 0.93     |  0.93            |   0.93    | 0.29      |

    | QuadraticDiscriminantAnalysis     | 0.93     |  0.93            |   0.93    | 0.04      |

    | DecisionTreeClassifier            | 0.88     |  0.88            |   0.88    | 0.04      |

    | ExtraTreeClassifier               | 0.83     |  0.83            |   0.83    | 0.04      |

    | DummyClassifier                   | 0.34     |  0.33            |   0.17    | 0.03      |

    -------------------------------------------------------------------------------------------

# Vertical bar plot

clf.barplot(predictions)

clf-bar


# Horizontal bar plot

clf.hbarplot(predictions)

clf-hbar

Regression

Example :


from funpredict.fun_model import PlayRegressor

from sklearn.datasets import load_diabetes

from sklearn.model_selection import train_test_split



# Test with Regressor Model

data = load_diabetes()

X,y = data.data, data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =42)



rgs = PlayRegressor(verbose=0,ignore_warnings=True, custom_metric=None)

models,predictions = rgs.fit(X_train, X_test, y_train, y_test)

# If you confirm which model works best then choose hare.

model_dictionary = rgs.provide_models(X_train, X_test,y_train,y_test)

print(models)



|-----------------------------------------------------------------------------------------|

| Model                             | Adjusted R-Squared | R-Squared |  RMSE | Time Taken | 

    |:------------------------------|-------------------:|----------:|------:|-----------:|

    | BayesianRidge                 |      0.45          |   0.48    | 54.46 |    0.04    |

    | ElasticNetCV                  |      0.46          |   0.48    | 54.41 |    0.31    |

    | RidgeCV                       |      0.45          |   0.48    | 54.51 |    0.04    |

    | LinearRegression              |      0.45          |   0.48    | 54.58 |    0.03    |

    | TransformedTargetRegressor    |      0.45          |   0.48    | 54.58 |    0.04    |

    | Lars                          |      0.45          |   0.48    | 54.58 |    0.05    |

    | Ridge                         |      0.45          |   0.48    | 54.59 |    0.03    |

    | Lasso                         |      0.45          |   0.47    | 54.69 |    0.03    |

    | LassoLars                     |      0.45          |   0.47    | 54.69 |    0.03    |

    | LassoCV                       |      0.45          |   0.47    | 54.70 |    0.28    |

    | LassoLarsCV                   |      0.45          |   0.47    | 54.71 |    0.07    |

    | PoissonRegressor              |      0.45          |   0.47    | 54.76 |    0.04    |

    | SGDRegressor                  |      0.45          |   0.47    | 54.76 |    0.04    |

    | OrthogonalMatchingPursuitCV   |      0.45          |   0.47    | 54.80 |    0.06    |

    | HuberRegressor                |      0.44          |   0.47    | 54.96 |    0.06    |

    | LassoLarsIC                   |      0.44          |   0.47    | 55.02 |    0.03    |

    | ElasticNet                    |      0.44          |   0.47    | 55.05 |    0.03    |

    | LarsCV                        |      0.43          |   0.45    | 55.72 |    0.09    |

    | AdaBoostRegressor             |      0.42          |   0.44    | 56.34 |    0.34    |

    | TweedieRegressor              |      0.41          |   0.44    | 56.40 |    0.03    |

    | ExtraTreesRegressor           |      0.41          |   0.44    | 56.60 |    0.40    |

    | PassiveAggressiveRegressor    |      0.41          |   0.44    | 56.61 |    0.03    |

    | GammaRegressor                |      0.41          |   0.43    | 56.79 |    0.02    |

    | LGBMRegressor                 |      0.40          |   0.43    | 57.04 |    0.12    |

    | CatBoostRegressor             |      0.39          |   0.42    | 57.47 |    3.26    |

    | RandomForestRegressor         |      0.38          |   0.41    | 58.00 |    0.79    |

    | HistGradientBoostingRegressor |      0.36          |   0.39    | 58.84 |    0.27    |

    | GradientBoostingRegressor     |      0.36          |   0.39    | 58.95 |    0.31    |

    | BaggingRegressor              |      0.33          |   0.36    | 60.12 |    0.11    |

    | KNeighborsRegressor           |      0.29          |   0.32    | 62.09 |    0.03    |

    | XGBRegressor                  |      0.23          |   0.27    | 64.59 |    0.21    |

    | OrthogonalMatchingPursuit     |      0.23          |   0.26    | 64.86 |    0.05    |

    | RANSACRegressor               |      0.11          |   0.15    | 69.40 |    0.33    |

    | NuSVR                         |      0.07          |   0.11    | 70.99 |    0.08    |

    | LinearSVR                     |      0.07          |   0.11    | 71.11 |    0.03    |

    | SVR                           |      0.07          |   0.11    | 71.23 |    0.04    |

    | DummyRegressor                |      0.05      -   |   0.00    | 75.45 |    0.02    |

    | DecisionTreeRegressor         |      0.13      -   |   0.08    | 78.38 |    0.03    |

    | ExtraTreeRegressor            |      0.18      -   |   0.13    | 80.02 |    0.02    |

    | GaussianProcessRegressor      |      0.99      -   |   0.90    | 04.06 |    0.07    |

    | MLPRegressor                  |      1.19      -   |   1.09    | 09.17 |    1.34    |

    | KernelRidge                   |      3.91      -   |   3.69    | 63.34 |    0.06    |

    |-------------------------------------------------------------------------------------|

# Vertical bar plot

rgs.barplot(predictions)

rgs-bar


# Horizontal bar plot

rgs.hbarplot(predictions)

rgs-hbar

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc