
Security News
The Next Open Source Security Race: Triage at Machine Speed
Claude Opus 4.6 has uncovered more than 500 open source vulnerabilities, raising new considerations for disclosure, triage, and patching at scale.
funpredict
Advanced tools
Introducing Fun Predict, the ultimate time-saver for machine learning! No more complex coding or tedious parameter tuning - just sit back and let Fun Predict build your basic models with ease. It's like having a personal assistant for your machine learning projects, making the process simple, efficient, and, well, Fun! 🛋
Fun Predict is a free, open-source Python library that helps you build and compare machine learning models easily, without writing much code. It allows you to quickly and easily evaluate a variety of models without having to write a lot of code or tune hyperparameters.
To install Fun Predict:
pip install funpredict
To use Fun Predict in a project:
import funpredict
Example :
from funpredict.fun_model import PlayClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
# Test with a Classification model
data = load_wine()
X,y = data.data,data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =42)
clf = PlayClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(X_train, X_test, y_train, y_test,'multiclass')
# If you confirm which model working best then choose hare.
model_dictionary = clf.provide_models(X_train,X_test,y_train,y_test)
print(models)
| Accuracy | Balanced Accuracy| F1 Score | Time Taken |
-----------------------------------------------------------------------------------------|
| Model : |
| -----------------------------------------------------+
| ExtraTreesClassifier | 1.00 | 1.00 | 1.00 | 0.27 |
| RandomForestClassifier | 1.00 | 1.00 | 1.00 | 0.40 |
| GaussianNB | 1.00 | 1.00 | 1.00 | 0.02 |
| CatBoostClassifier | 0.99 | 0.99 | 0.99 | 3.32 |
| KNeighborsClassifier | 0.99 | 0.99 | 0.99 | 0.03 |
| RidgeClassifierCV | 0.99 | 0.99 | 0.99 | 0.02 |
| PassiveAggressiveClassifier | 0.99 | 0.99 | 0.99 | 0.04 |
| LogisticRegression | 0.99 | 0.99 | 0.99 | 0.03 |
| NearestCentroid | 0.98 | 0.98 | 0.98 | 0.03 |
| LGBMClassifier | 0.98 | 0.98 | 0.98 | 0.15 |
| Perceptron | 0.98 | 0.98 | 0.98 | 0.04 |
| SGDClassifier | 0.98 | 0.98 | 0.98 | 0.02 |
| LinearDiscriminantAnalysis | 0.98 | 0.98 | 0.98 | 0.02 |
| LinearSVC | 0.98 | 0.98 | 0.98 | 0.02 |
| RidgeClassifier | 0.98 | 0.98 | 0.98 | 0.02 |
| NuSVC | 0.98 | 0.98 | 0.98 | 0.02 |
| SVC | 0.98 | 0.98 | 0.98 | 0.02 |
| LabelPropagation | 0.97 | 0.97 | 0.97 | 0.02 |
| LabelSpreading | 0.97 | 0.97 | 0.97 | 0.02 |
| XGBClassifier | 0.97 | 0.97 | 0.97 | 0.10 |
| BaggingClassifier | 0.97 | 0.97 | 0.97 | 0.11 |
| BernoulliNB | 0.94 | 0.94 | 0.94 | 0.04 |
| CalibratedClassifierCV | 0.94 | 0.94 | 0.94 | 0.15 |
| AdaBoostClassifier | 0.93 | 0.93 | 0.93 | 0.29 |
| QuadraticDiscriminantAnalysis | 0.93 | 0.93 | 0.93 | 0.04 |
| DecisionTreeClassifier | 0.88 | 0.88 | 0.88 | 0.04 |
| ExtraTreeClassifier | 0.83 | 0.83 | 0.83 | 0.04 |
| DummyClassifier | 0.34 | 0.33 | 0.17 | 0.03 |
-------------------------------------------------------------------------------------------
# Vertical bar plot
clf.barplot(predictions)
# Horizontal bar plot
clf.hbarplot(predictions)
Example :
from funpredict.fun_model import PlayRegressor
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
# Test with Regressor Model
data = load_diabetes()
X,y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =42)
rgs = PlayRegressor(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = rgs.fit(X_train, X_test, y_train, y_test)
# If you confirm which model works best then choose hare.
model_dictionary = rgs.provide_models(X_train, X_test,y_train,y_test)
print(models)
|-----------------------------------------------------------------------------------------|
| Model | Adjusted R-Squared | R-Squared | RMSE | Time Taken |
|:------------------------------|-------------------:|----------:|------:|-----------:|
| BayesianRidge | 0.45 | 0.48 | 54.46 | 0.04 |
| ElasticNetCV | 0.46 | 0.48 | 54.41 | 0.31 |
| RidgeCV | 0.45 | 0.48 | 54.51 | 0.04 |
| LinearRegression | 0.45 | 0.48 | 54.58 | 0.03 |
| TransformedTargetRegressor | 0.45 | 0.48 | 54.58 | 0.04 |
| Lars | 0.45 | 0.48 | 54.58 | 0.05 |
| Ridge | 0.45 | 0.48 | 54.59 | 0.03 |
| Lasso | 0.45 | 0.47 | 54.69 | 0.03 |
| LassoLars | 0.45 | 0.47 | 54.69 | 0.03 |
| LassoCV | 0.45 | 0.47 | 54.70 | 0.28 |
| LassoLarsCV | 0.45 | 0.47 | 54.71 | 0.07 |
| PoissonRegressor | 0.45 | 0.47 | 54.76 | 0.04 |
| SGDRegressor | 0.45 | 0.47 | 54.76 | 0.04 |
| OrthogonalMatchingPursuitCV | 0.45 | 0.47 | 54.80 | 0.06 |
| HuberRegressor | 0.44 | 0.47 | 54.96 | 0.06 |
| LassoLarsIC | 0.44 | 0.47 | 55.02 | 0.03 |
| ElasticNet | 0.44 | 0.47 | 55.05 | 0.03 |
| LarsCV | 0.43 | 0.45 | 55.72 | 0.09 |
| AdaBoostRegressor | 0.42 | 0.44 | 56.34 | 0.34 |
| TweedieRegressor | 0.41 | 0.44 | 56.40 | 0.03 |
| ExtraTreesRegressor | 0.41 | 0.44 | 56.60 | 0.40 |
| PassiveAggressiveRegressor | 0.41 | 0.44 | 56.61 | 0.03 |
| GammaRegressor | 0.41 | 0.43 | 56.79 | 0.02 |
| LGBMRegressor | 0.40 | 0.43 | 57.04 | 0.12 |
| CatBoostRegressor | 0.39 | 0.42 | 57.47 | 3.26 |
| RandomForestRegressor | 0.38 | 0.41 | 58.00 | 0.79 |
| HistGradientBoostingRegressor | 0.36 | 0.39 | 58.84 | 0.27 |
| GradientBoostingRegressor | 0.36 | 0.39 | 58.95 | 0.31 |
| BaggingRegressor | 0.33 | 0.36 | 60.12 | 0.11 |
| KNeighborsRegressor | 0.29 | 0.32 | 62.09 | 0.03 |
| XGBRegressor | 0.23 | 0.27 | 64.59 | 0.21 |
| OrthogonalMatchingPursuit | 0.23 | 0.26 | 64.86 | 0.05 |
| RANSACRegressor | 0.11 | 0.15 | 69.40 | 0.33 |
| NuSVR | 0.07 | 0.11 | 70.99 | 0.08 |
| LinearSVR | 0.07 | 0.11 | 71.11 | 0.03 |
| SVR | 0.07 | 0.11 | 71.23 | 0.04 |
| DummyRegressor | 0.05 - | 0.00 | 75.45 | 0.02 |
| DecisionTreeRegressor | 0.13 - | 0.08 | 78.38 | 0.03 |
| ExtraTreeRegressor | 0.18 - | 0.13 | 80.02 | 0.02 |
| GaussianProcessRegressor | 0.99 - | 0.90 | 04.06 | 0.07 |
| MLPRegressor | 1.19 - | 1.09 | 09.17 | 1.34 |
| KernelRidge | 3.91 - | 3.69 | 63.34 | 0.06 |
|-------------------------------------------------------------------------------------|
# Vertical bar plot
rgs.barplot(predictions)
# Horizontal bar plot
rgs.hbarplot(predictions)
FAQs
Introducing Fun Predict, the ultimate time-saver for machine learning! No more complex coding or tedious parameter tuning - just sit back and let Fun Predict build your basic models with ease. It's like having a personal assistant for your machine learning projects, making the process simple, efficient, and, well, Fun! 🛋
We found that funpredict demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Claude Opus 4.6 has uncovered more than 500 open source vulnerabilities, raising new considerations for disclosure, triage, and patching at scale.

Research
/Security News
Malicious dYdX client packages were published to npm and PyPI after a maintainer compromise, enabling wallet credential theft and remote code execution.

Security News
gem.coop is testing registry-level dependency cooldowns to limit exposure during the brief window when malicious gems are most likely to spread.