GAPandas4
GAPandas4 is a Python package for querying the Google Analytics Data API for GA4 and displaying the results in a Pandas dataframe. It is the successor to the GAPandas package, which did the same thing for GA3 or Universal Analytics. GAPandas4 is a wrapper around the official Google Analytics Data API package and simplifies imports and queries, requiring far less code.
Before you start
In order to use GAPandas4 you will first need to create a Google Service Account with access to the Google Analytics Data API and export a client secrets JSON keyfile to use for authentication. You'll also need to add the service account email address as a user on the Google Analytics 4 property you wish to access, and you'll need to note the property ID to use in your queries.
Installation
As this is currently in alpha, there's currently no Pip package, however, you can install the code into your Python environment directly from GitHub using the command below. It will run fine in a Jupyter notebook, a Python IDE, or a Python script.
pip3 install git+https://github.com/practical-data-science/gapandas4.git
Usage
GAPandas4 has been written to allow you to use as little code as possible. Unlike the previous version of GAPandas for Universal Analytics, which used a payload based on a Python dictionary, GAPandas4 now uses a Protobuf (Protocol Buffer) payload as used in the API itself.
Report
The query()
function is used to send a protobug API payload to the API. The function supports various report types
via the report_type
argument. Standard reports are handled using report_type="report"
, but this is also the
default. Data are returned as a Pandas dataframe.
import gapandas4 as gp
service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'
report_request = gp.RunReportRequest(
property=f"properties/{property_id}",
dimensions=[
gp.Dimension(name="country"),
gp.Dimension(name="city")
],
metrics=[
gp.Metric(name="activeUsers")
],
date_ranges=[gp.DateRange(start_date="2022-06-01", end_date="2022-06-01")],
)
df = gp.query(service_account, report_request, report_type="report")
print(df.head())
Batch report
If you construct a protobuf payload using BatchRunReportsRequest()
you can pass up to five requests at once. These
are returned as a list of Pandas dataframes, so will need to access them using their index.
import gapandas4 as gp
service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'
batch_report_request = gp.BatchRunReportsRequest(
property=f"properties/{property_id}",
requests=[
gp.RunReportRequest(
dimensions=[
gp.Dimension(name="country"),
gp.Dimension(name="city")
],
metrics=[
gp.Metric(name="activeUsers")
],
date_ranges=[gp.DateRange(start_date="2022-06-01", end_date="2022-06-01")]
),
gp.RunReportRequest(
dimensions=[
gp.Dimension(name="country"),
gp.Dimension(name="city")
],
metrics=[
gp.Metric(name="activeUsers")
],
date_ranges=[gp.DateRange(start_date="2022-06-02", end_date="2022-06-02")]
)
]
)
df = gp.query(service_account, batch_report_request, report_type="batch_report")
print(df[0].head())
print(df[1].head())
Pivot report
Constructing a report using RunPivotReportRequest()
will return pivoted data in a single Pandas dataframe.
import gapandas4 as gp
service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'
pivot_request = gp.RunPivotReportRequest(
property=f"properties/{property_id}",
dimensions=[gp.Dimension(name="country"),
gp.Dimension(name="browser")],
metrics=[gp.Metric(name="sessions")],
date_ranges=[gp.DateRange(start_date="2022-05-30", end_date="today")],
pivots=[
gp.Pivot(
field_names=["country"],
limit=5,
order_bys=[
gp.OrderBy(
dimension=gp.OrderBy.DimensionOrderBy(dimension_name="country")
)
],
),
gp.Pivot(
field_names=["browser"],
offset=0,
limit=5,
order_bys=[
gp.OrderBy(
metric=gp.OrderBy.MetricOrderBy(metric_name="sessions"), desc=True
)
],
),
],
)
df = gp.query(service_account, pivot_request, report_type="pivot")
print(df.head())
Batch pivot report
Constructing a payload using BatchRunPivotReportsRequest()
will allow you to run up to five pivot reports. These
are returned as a list of Pandas dataframes.
import gapandas4 as gp
service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'
batch_pivot_request = gp.BatchRunPivotReportsRequest(
property=f"properties/{property_id}",
requests=[
gp.RunPivotReportRequest(
dimensions=[gp.Dimension(name="country"),
gp.Dimension(name="browser")],
metrics=[gp.Metric(name="sessions")],
date_ranges=[gp.DateRange(start_date="2022-05-30", end_date="today")],
pivots=[
gp.Pivot(
field_names=["country"],
limit=5,
order_bys=[
gp.OrderBy(
dimension=gp.OrderBy.DimensionOrderBy(dimension_name="country")
)
],
),
gp.Pivot(
field_names=["browser"],
offset=0,
limit=5,
order_bys=[
gp.OrderBy(
metric=gp.OrderBy.MetricOrderBy(metric_name="sessions"), desc=True
)
],
),
],
),
gp.RunPivotReportRequest(
dimensions=[gp.Dimension(name="country"),
gp.Dimension(name="browser")],
metrics=[gp.Metric(name="sessions")],
date_ranges=[gp.DateRange(start_date="2022-05-30", end_date="today")],
pivots=[
gp.Pivot(
field_names=["country"],
limit=5,
order_bys=[
gp.OrderBy(
dimension=gp.OrderBy.DimensionOrderBy(dimension_name="country")
)
],
),
gp.Pivot(
field_names=["browser"],
offset=0,
limit=5,
order_bys=[
gp.OrderBy(
metric=gp.OrderBy.MetricOrderBy(metric_name="sessions"), desc=True
)
],
),
],
)
]
)
df = gp.query(service_account, batch_pivot_request, report_type="batch_pivot")
print(df[0].head())
print(df[1].head())
Metadata
The get_metadata()
function will return all metadata on dimensions and metrics within the Google Analytics 4 property.
metadata = gp.get_metadata(service_account, property_id)
print(metadata)
Current features
- Support for all current API functionality including
RunReportRequest
, BatchRunReportsRequest
,
RunPivotReportRequest
, BatchRunPivotReportsRequest
, RunRealtimeReportRequest
, and GetMetadataRequest
. - Returns data in a Pandas dataframe, or a list of Pandas dataframes.