
Security News
The Nightmare Before Deployment
Season’s greetings from Socket, and here’s to a calm end of year: clean dependencies, boring pipelines, no surprises.
gensim
Advanced tools
|GA|_ |Wheel|_
.. |GA| image:: https://github.com/RaRe-Technologies/gensim/actions/workflows/tests.yml/badge.svg?branch=develop .. |Wheel| image:: https://img.shields.io/pypi/wheel/gensim.svg
.. _GA: https://github.com/RaRe-Technologies/gensim/actions .. _Downloads: https://pypi.org/project/gensim/ .. _License: https://radimrehurek.com/gensim/intro.html#licensing .. _Wheel: https://pypi.org/project/gensim/
Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community.
All algorithms are memory-independent w.r.t. the corpus size (can process input larger than RAM, streamed, out-of-core)
Intuitive interfaces
Efficient multicore implementations of popular algorithms, such as online Latent Semantic Analysis (LSA/LSI/SVD), Latent Dirichlet Allocation (LDA), Random Projections (RP), Hierarchical Dirichlet Process (HDP) or word2vec deep learning.
Distributed computing: can run Latent Semantic Analysis and Latent Dirichlet Allocation on a cluster of computers.
Extensive documentation and Jupyter Notebook tutorials <https://github.com/RaRe-Technologies/gensim/#documentation>_.
If this feature list left you scratching your head, you can first read more about the Vector Space Model <https://en.wikipedia.org/wiki/Vector_space_model>_ and unsupervised document analysis <https://en.wikipedia.org/wiki/Latent_semantic_indexing>_ on Wikipedia.
This software depends on NumPy and Scipy <https://scipy.org/install/>_, two Python packages for scientific computing.
You must have them installed prior to installing gensim.
It is also recommended you install a fast BLAS library before installing NumPy. This is optional, but using an optimized BLAS such as MKL, ATLAS <https://math-atlas.sourceforge.net/>_ or OpenBLAS <https://xianyi.github.io/OpenBLAS/>_ is known to improve performance by as much as an order of magnitude. On OSX, NumPy picks up its vecLib BLAS automatically, so you don't need to do anything special.
Install the latest version of gensim::
pip install --upgrade gensim
Or, if you have instead downloaded and unzipped the source tar.gz <https://pypi.org/project/gensim/>_ package::
python setup.py install
For alternative modes of installation, see the documentation <https://radimrehurek.com/gensim/#install>_.
Gensim is being continuously tested <https://radimrehurek.com/gensim/#testing>_ under all supported Python versions <https://github.com/RaRe-Technologies/gensim/wiki/Gensim-And-Compatibility>_.
Support for Python 2.7 was dropped in gensim 4.0.0 – install gensim 3.8.3 if you must use Python 2.7.
Many scientific algorithms can be expressed in terms of large matrix operations (see the BLAS note above). Gensim taps into these low-level BLAS libraries, by means of its dependency on NumPy. So while gensim-the-top-level-code is pure Python, it actually executes highly optimized Fortran/C under the hood, including multithreading (if your BLAS is so configured).
Memory-wise, gensim makes heavy use of Python's built-in generators and iterators for streamed data processing. Memory efficiency was one of gensim's design goals <https://radimrehurek.com/gensim/intro.html#design-principles>_, and is a central feature of gensim, rather than something bolted on as an afterthought.
QuickStart_Tutorials_Tutorial Videos_Official Documentation and Walkthrough_When citing gensim in academic papers and theses <https://scholar.google.cz/citations?view_op=view_citation&hl=en&user=9vG_kV0AAAAJ&citation_for_view=9vG_kV0AAAAJ:u-x6o8ySG0sC>_, please use this BibTeX entry::
@inproceedings{rehurek_lrec, title = {{Software Framework for Topic Modelling with Large Corpora}}, author = {Radim {\v R}eh{\r u}{\v r}ek and Petr Sojka}, booktitle = {{Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks}}, pages = {45--50}, year = 2010, month = May, day = 22, publisher = {ELRA}, address = {Valletta, Malta}, language={English} }
Gensim is open source software released under the GNU LGPLv2.1 license <https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html>_.
Copyright (c) 2009-now Radim Rehurek
.. _Official Documentation and Walkthrough: https://radimrehurek.com/gensim/ .. _Tutorials: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#tutorials .. _Tutorial Videos: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#videos .. _QuickStart: https://radimrehurek.com/gensim/gensim_numfocus/auto_examples/core/run_core_concepts.html
FAQs
Python framework for fast Vector Space Modelling
We found that gensim demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Season’s greetings from Socket, and here’s to a calm end of year: clean dependencies, boring pipelines, no surprises.

Research
/Security News
Impostor NuGet package Tracer.Fody.NLog typosquats Tracer.Fody and its author, using homoglyph tricks, and exfiltrates Stratis wallet JSON/passwords to a Russian IP address.

Security News
Deno 2.6 introduces deno audit with a new --socket flag that plugs directly into Socket to bring supply chain security checks into the Deno CLI.