
Security News
Crates.io Implements Trusted Publishing Support
Crates.io adds Trusted Publishing support, enabling secure GitHub Actions-based crate releases without long-lived API tokens.
A pure numpy implementation for geodesic functions. The interfaces are vectorized according to numpy broadcasting rules compatible with a variety of inputs including lists, numpy arrays, and Shapely geometries - allowing for 1-to-1, N-to-1, or the element-wise N-to-N calculations in a single call.
geog
uses a spherical Earth model (subject to change) with radius 6371.0 km.
geog
draws inspiration from TurfJS
distance
- Compute the distance in meters between any number of longitude,latitude pointscourse
- Compute the forward azimuth between pointspropagate
- Starting from some points and pointing azimuths, move some
distance and compute the final points.Compute the distance in meters between two locations on the surface of the Earth.
>>> import geog
>>> boston = [-71.0589, 42.3601]
>>> la = [-118.2500, 34.0500]
>>> geog.distance(boston, la)
4179393.4717019284
>>> geog.course(boston, la)
176.76437002826202
geog
allows different sizes of inputs conforming to numpy broadcasting
rules
Compute the distances from several points to one point.
>>> dc = [-77.0164, 38.9047]
>>> paris = [2.3508, 48.8567]
>>> geog.distance([boston, la, dc], paris)
array([ 5531131.56144631, 9085960.07227854, 6163490.48394848])
Compute the element-wise distance of several points to several points
>>> sydney = [151.2094, -33.865]
>>> barcelona = [2.1833, 41.3833]
>>> geog.distance([boston, la, dc], [paris, sydney, barcelona])
array([ 5531131.56144631, 12072666.9425518 , 6489222.58111716])
geog
functions can take numpy arrays as inputs
>>> import numpy as np
>>> points = np.array([boston, la, dc])
>>> points
array([[ -71.0589, 42.3601],
[-118.25 , 34.05 ],
[ -77.0164, 38.9047]])
>>> geog.distance(points, sydney)
array([ 16239763.03982447, 12072666.9425518 , 15711932.63508411])
geog
functions can also take Shapely geometries as inputs
>>> import shapely.geometry
>>> p = shapely.geometry.Point([-90.0667, 29.9500])
>>> geog.distance(points, p)
array([ 2185738.94680724, 2687705.07260978, 1554066.84579387])
Use propagate
to buffer a single point by passing in multiple angles.
>>> n_points = 6
>>> d = 100 # meters
>>> angles = np.linspace(0, 360, n_points)
>>> polygon = geog.propagate(p, angles, d)
Compute the length of a line over the surface.
>>> np.sum(geog.distance(line[:-1,:], line[1:,:]))
distance(p0, p1, deg=True)
course(p0, p1, deg=True, bearing=False)
propagate(p0, angle, d, deg=True, bearing=False)
For all of the above, p0
or p1
can be:
If argument deg
is False, then all angle arguments, coordinates and
azimuths, will be used as radians. If deg
is False in course()
, then it's
output will also be radians.
Consult the documentation on each function for more detailed descriptions of the arguments.
N x 2
.bearing=True
argument to use the more
traditional definition where 0 degrees is due North increasing clockwise such
that that 90 degrees is due East.geog is hosted on PyPI.
pip install geog
FAQs
Numpy-based vectorized geospatial functions
We found that geog demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Crates.io adds Trusted Publishing support, enabling secure GitHub Actions-based crate releases without long-lived API tokens.
Research
/Security News
Undocumented protestware found in 28 npm packages disrupts UI for Russian-language users visiting Russian and Belarusian domains.
Research
/Security News
North Korean threat actors deploy 67 malicious npm packages using the newly discovered XORIndex malware loader.