Socket
Book a DemoInstallSign in
Socket

giftpy

Package Overview
Dependencies
Maintainers
1
Versions
22
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

giftpy

GIFT mathematical core - Formally verified constants (Lean 4 + Coq)

pipPyPI
Version
3.1.8
Maintainers
1

GIFT Core

Formal Verification Python Tests PyPI Lean 4 Coq

Formally verified mathematical relations from the GIFT framework. All theorems proven in Lean 4 and Coq.

Certificate Structure

The GIFT Certificate proves 180+ mathematical identities organized in five foundational pillars:

1. E₈ Root System (248 dimensions)

dim(E₈) = 248 = 240 roots + 8 rank
        = 8 × 31 (Mersenne structure)
        = 120 + 128 (SO(16) decomposition)
  • Complete root enumeration: 112 (D₈) + 128 (half-integer)
  • Weyl group order: 2¹⁴ × 3⁵ × 5² × 7 = 696,729,600
  • Weyl reflection preserves E₈ lattice

2. G₂ Holonomy (14 dimensions)

dim(G₂) = 14 = 12 roots + 2 rank
             = GL(7) orbit stabilizer: 49 - 35
  • 7D cross product with Lagrange identity: ‖u × v‖² = ‖u‖²‖v‖² - ⟨u,v⟩²
  • Fano plane structure (7 lines ↔ 7 octonion imaginaries)
  • Bilinearity, antisymmetry, octonion structure proven

3. K₇ Manifold via TCS (v3.2)

M₁ = Quintic in CP⁴:    b₂ = 11,  b₃ = 40
M₂ = CI(2,2,2) in CP⁶:  b₂ = 10,  b₃ = 37
─────────────────────────────────────────
K₇ = M₁ #_TCS M₂:       b₂ = 21,  b₃ = 77  (BOTH DERIVED!)

H* = b₂ + b₃ + 1 = 99
  • TCS (Twisted Connected Sum) construction from Corti-Haskins-Nordström-Pacini
  • Both Betti numbers now derived from building blocks (was: b₃ input)
  • Hodge duality and Poincaré duality verified

4. Joyce Existence Theorem

K₇ admits torsion-free G₂ structure
‖T‖ < 0.00141 vs threshold 0.0288 (20× margin)
  • Banach fixed-point formalization
  • Sobolev embedding H⁴ -> C⁰ (4 > 7/2)
  • Implicit function theorem conditions verified

5. Structural Identities (v3.2)

Weyl Triple Identity: 3 independent paths to Weyl = 5
  (dim_G₂ + 1) / N_gen = 5
  b₂ / N_gen - p₂ = 5
  dim_G₂ - rank_E₈ - 1 = 5

PSL(2,7) = 168: Fano plane symmetry
  (b₃ + dim_G₂) + b₃ = 168
  rank_E₈ × b₂ = 168
  N_gen × (b₃ - b₂) = 168

Physical Relations

The Certificate derives Standard Model parameters from topology:

RelationFormulaValue
Weinberg anglesin²θ_W = 3(b₃+dim_G₂)/(13×b₂)3/13
Koide parameterQ = 2×dim_G₂/(3×b₂)2/3
Generation countN_gen3
κ_T denominatorb₃ - dim_G₂ - p₂61
γ_GIFT(2×rank_E₈ + 5×H*)/(10×dim_G₂ + 3×dim_E₈)511/884
Ω_DE(b₂ + b₃)/H*98/99
m_τ/m_e(b₃ - b₂) × 62 + 53477

See Lean/GIFT/Certificate.lean for complete theorem statements.

Extensions

  • Sequence Embeddings: Fibonacci F₃–F₁₂ and Lucas L₀–L₉ map to GIFT constants
  • Prime Atlas: 100% coverage of primes < 200 via three generators (b₃, H*, dim_E₈)
  • Monstrous Moonshine: 196883 = 47 × 59 × 71, j-invariant 744 = 3 × dim_E₈
  • McKay Correspondence: E₈ ↔ Binary Icosahedral ↔ Golden Ratio

Installation

pip install giftpy

Quick Start

from gift_core import *

# Certified constants
print(SIN2_THETA_W)   # Fraction(3, 13)
print(KAPPA_T)        # Fraction(1, 61)
print(GAMMA_GIFT)     # Fraction(511, 884)

Building Proofs

# Lean 4
cd Lean && lake build

# Coq
cd COQ && make

Documentation

Acknowledgments

Blueprint structure inspired by KakeyaFiniteFields.

License

MIT

GIFT Core v3.2.0

Keywords

physics

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts