New: Introducing PHP and Composer Support.Read the Announcement
Socket
Book a DemoInstallSign in
Socket

giftpy

Package Overview
Dependencies
Maintainers
1
Versions
43
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

giftpy

GIFT mathematical core - Formally verified constants (Lean 4)

pipPyPI
Version
3.2.0
Maintainers
1

GIFT Core

Formal Verification Python Tests PyPI

Formally verified mathematical relations from the GIFT framework. All theorems proven in Lean 4.

Structure

Lean/GIFT/
├── Core.lean              # Constants (dim_E8, b2, b3, H*, ...)
├── Certificate.lean       # Master theorem (290+ relations)
├── Foundations/           # E8 roots, G2 cross product, Joyce
│   └── Analysis/G2Forms/  # G2 structure: d, ⋆, TorsionFree, Bridge
├── Geometry/              # DG-ready infrastructure [v3.3.7] AXIOM-FREE!
│   ├── Exterior.lean      # Λ*(ℝ⁷) exterior algebra
│   ├── DifferentialFormsR7.lean  # DiffForm, d, d²=0
│   ├── HodgeStarCompute.lean     # Explicit Hodge star (Levi-Civita)
│   └── HodgeStarR7.lean   # ⋆, ψ=⋆φ PROVEN, TorsionFree
├── Spectral/              # Spectral theory [v3.3.17]
│   ├── PhysicalSpectralGap.lean  # ev₁ = 13/99 (zero axioms)
│   ├── SelbergBridge.lean        # Trace formula: MollifiedSum <-> Spectral
│   ├── SelectionPrinciple.lean   # κ = π²/14, building blocks
│   ├── RefinedSpectralBounds.lean # Refined bounds with H7
│   ├── NeckGeometry.lean         # TCS structure, H1-H6 hypotheses
│   ├── TCSBounds.lean            # Model Theorem: ev₁ ~ 1/L²
│   ├── LiteratureAxioms.lean     # Langlais 2024, CGN 2024
│   ├── MassGapRatio.lean         # 14/99 bare algebraic
│   └── YangMills.lean            # Gauge theory connection
├── MollifiedSum/         # Mollified Dirichlet polynomial S_w(T) [v3.3.16]
│   ├── Mollifier.lean         # Cosine-squared kernel w(x)
│   ├── Sum.lean               # S_w(T) as Finset.sum over primes
│   └── Adaptive.lean          # Adaptive cutoff θ(T) = θ₀ + θ₁/log T
├── Zeta/                  # GIFT-Zeta correspondences [v3.3.10]
│   ├── Basic.lean         # gamma, lambda axioms
│   ├── Correspondences.lean      # γ_n ~ GIFT constants
│   └── MultiplesOf7.lean  # Structure theorem
├── Moonshine/             # Monster group connections [v3.3.11]
│   ├── MonsterCoxeter.lean# Monster dim via Coxeter numbers NEW!
│   ├── Supersingular.lean # 15 primes GIFT-expressible
│   └── MonsterZeta.lean   # Monster-Zeta Moonshine
├── Algebraic/             # Octonions, Betti numbers
├── Observables/           # PMNS, CKM, quark masses, cosmology
└── Relations/             # Physical predictions

gift_core/                 # Python package (giftpy)

Quick Start

pip install giftpy
from gift_core import *

print(SIN2_THETA_W)   # Fraction(3, 13)
print(GAMMA_GIFT)     # Fraction(511, 884)
print(TAU)            # Fraction(3472, 891)

Building Proofs

cd Lean && lake build

Documentation

For extended observables, publications, and detailed analysis:

gift-framework/GIFT

Changelog | MIT License

GIFT Core v3.3.17

Keywords

physics

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts