
Security News
Node.js Moves Toward Stable TypeScript Support with Amaro 1.0
Amaro 1.0 lays the groundwork for stable TypeScript support in Node.js, bringing official .ts loading closer to reality.
GLiREL is a Relation Extraction model capable of classifying unseen relations given the entities within a text. This builds upon the excelent work done by Urchade Zaratiana, Nadi Tomeh, Pierre Holat, Thierry Charnois on the GLiNER library which enables efficient zero-shot Named Entity Recognition.
📄 GLiREL Paper • 📄 GLiNER Paper • 🤗 Demo • 🤗 Available models
pip install glirel
Once you've downloaded the GLiREL library, you can import the GLiREL
class. You can then load this model using GLiREL.from_pretrained
and predict entities with predict_relations
.
from glirel import GLiREL
import spacy
model = GLiREL.from_pretrained("jackboyla/glirel-large-v0")
nlp = spacy.load('en_core_web_sm')
text = 'Derren Nesbitt had a history of being cast in "Doctor Who", having played villainous warlord Tegana in the 1964 First Doctor serial "Marco Polo".'
doc = nlp(text)
tokens = [token.text for token in doc]
labels = ['country of origin', 'licensed to broadcast to', 'father', 'followed by', 'characters']
ner = [[26, 27, 'PERSON', 'Marco Polo'], [22, 23, 'Q2989412', 'First Doctor']] # 'type' is not used -- it can be any string!
relations = model.predict_relations(tokens, labels, threshold=0.0, ner=ner, top_k=1)
print('Number of relations:', len(relations))
sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
print("\nDescending Order by Score:")
for item in sorted_data_desc:
print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}")
Number of relations: 2
Descending Order by Score:
{'head_pos': [26, 28], 'tail_pos': [22, 24], 'head_text': ['Marco', 'Polo'], 'tail_text': ['First', 'Doctor'], 'label': 'characters', 'score': 0.9923334121704102}
{'head_pos': [22, 24], 'tail_pos': [26, 28], 'head_text': ['First', 'Doctor'], 'tail_text': ['Marco', 'Polo'], 'label': 'characters', 'score': 0.9915636777877808}
In practice, we usually want to define the types of entities that can exist as a head and/or tail of a relationship. This is already implemented in GLiREL:
labels = {"glirel_labels": {
'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'no relation': {}, # head and tail can be any entity type
'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]},
'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]},
'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'founded on date': {"allowed_head": ["ORG"], "allowed_tail": ["DATE"]},
'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]},
'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
}
}
You can also load GliREL into a regular spaCy NLP pipeline. Here's an example using an English pipeline.
import spacy
import glirel
# Load a blank spaCy model or an existing one
nlp = spacy.load('en_core_web_sm')
# Add the GLiREL component to the pipeline
nlp.add_pipe("glirel", after="ner")
# Now you can use the pipeline with the GLiREL component
text = "Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in April 1976. The company is headquartered in Cupertino, California."
labels = {"glirel_labels": {
'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]},
'licensed to broadcast to': {"allowed_head": ["ORG"]},
'no relation': {},
'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'followed by': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["PERSON", "ORG"]},
'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]},
'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]},
'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
}
}
# Add the labels to the pipeline at inference time
docs = list( nlp.pipe([(text, labels)], as_tuples=True) )
relations = docs[0][0]._.relations
print('Number of relations:', len(relations))
sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
print("\nDescending Order by Score:")
for item in sorted_data_desc:
print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}")
Number of relations: 5
Descending Order by Score:
['Apple', 'Inc.'] --> headquartered in --> ['California'] | score: 0.9854260683059692
['Apple', 'Inc.'] --> headquartered in --> ['Cupertino'] | score: 0.9569844603538513
['Steve', 'Wozniak'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.09025496244430542
['Steve', 'Jobs'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.08805803954601288
['Ronald', 'Wayne'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.07996643334627151
NOTE that the entity indices are inclusive i.e "Binsey"
is [7, 7]
. This differs from spaCy where the end index is exclusive (in this case spaCy would set the indices to [7, 8]
)
JSONL file:
{
"ner": [
[7, 7, "Q4914513", "Binsey"],
[11, 12, "Q19686", "River Thames"]
],
"relations": [
{
"head": {"mention": "Binsey", "position": [7, 7], "type": "LOC"}, # 'type' is not used -- it can be any string!
"tail": {"mention": "River Thames", "position": [11, 12], "type": "Q19686"},
"relation_text": "located in or next to body of water"
}
],
"tokenized_text": ["The", "race", "took", "place", "between", "Godstow", "and", "Binsey", "along", "the", "Upper", "River", "Thames", "."]
},
{
"ner": [
[9, 10, "Q4386693", "Legislative Assembly"],
[1, 3, "Q1848835", "Parliament of Victoria"]
],
"relations": [
{
"head": {"mention": "Legislative Assembly", "position": [9, 10], "type": "Q4386693"},
"tail": {"mention": "Parliament of Victoria", "position": [1, 3], "type": "Q1848835"},
"relation_text": "part of"
}
],
"tokenized_text": ["The", "Parliament", "of", "Victoria", "consists", "of", "the", "lower", "house", "Legislative", "Assembly", ",", "the", "upper", "house", "Legislative", "Council", "and", "the", "Queen", "of", "Australia", "."]
}
GLiREL by Jack Boylan is licensed under CC BY-NC-SA 4.0.
If you use code or ideas from this project, please cite:
@misc{boylan2025glirelgeneralistmodel,
title={GLiREL -- Generalist Model for Zero-Shot Relation Extraction},
author={Jack Boylan and Chris Hokamp and Demian Gholipour Ghalandari},
year={2025},
eprint={2501.03172},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.03172},
}
FAQs
Generalist model for Relation Extraction (Extract any relation types from texts)
We found that glirel demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Amaro 1.0 lays the groundwork for stable TypeScript support in Node.js, bringing official .ts loading closer to reality.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.