New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

gmalglib

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gmalglib

Python package implementing GM algorithms in C.

0.5.9
PyPI
Maintainers
1

gmalglib

Unittest PyPI docs

Python extension library for GM (GuoMi) cryptographic algorithms, providing a set of fundamental cryptographic algorithms.

Implemented in C language, encapsulated based on the native CPython interface, without dependencies on any third-party libraries.

Installation

pip install gmalglib

Core Algorithms Implemented

  • SM2 Public Key Cryptograhpic Algorithm Based on Elliptic Curves
    • Sign/Verify
    • Key exchange
    • Encrypt/Decrypt
  • SM3 Cryptogrpahic Hash Algorithm
  • SM4 Block Cipher Algorithm
  • ZUC Stream Cipher Algorithm

Usage

For submodules under gmalglib, different algorithm encapsulations are respectively exported, and can be utilized in an object-oriented manner.

from gmalglib.sm3 import SM3

obj = SM3()
obj.update(b"message")
obj.update(b"digest")
print(obj.digest().hex())

Under gmalglib.wrapped, member methods of all algorithm objects are encapsulated, providing a procedural call method. Furthermore, the gmalglib namespace is imported, enabling direct usage.

import gmalglib

print(gmalglib.sm3_digest(b"messagedigest").hex())

About Random Number Generators

For all sections involving random number generators, custom parameters for random number generation are provided, implemented in the form of callback functions. The function type is Callable[[int], bytes], meaning it generates a byte string of a specified length.

def rnd_fn(n: int) -> bytes: ...

If no random number generator is passed, the default system-related random number generator is used. On Windows, it utilizes BCryptGenRandom, while other systems use /dev/urandom for implementation, which is similar to the Python standard library function os.urandom.

For specific implementation details, refer to random.c under the OsRandomProc function.

Benchmark Test

The benchmark test code can be found in benchmark.py. The test results on the 13th Gen Intel(R) Core(TM) i7-13700H are as follows:

==================== SM2 Benchmark Test (1000 times, 32 bytes data) ====================
SM2.encrypt             : 0.454363s (2200.88 times/s)
SM2.decrypt             : 0.356014s (2808.88 times/s)
SM2.sign_digest         : 0.088565s (11291.12 times/s)
SM2.verify_digest       : 0.409243s (2443.54 times/s)
SM2.sign                : 0.087475s (11431.80 times/s)
SM2.verify              : 0.404026s (2475.09 times/s)
SM2.begin_key_exchange  : 0.086665s (11538.62 times/s)
SM2.end_key_exchange    : 0.536552s (1863.75 times/s)
==================== SM3 Benchmark Test (1,000,000,000 bytes data) ====================
SM3.update & SM3.digest : 3.083487s (324,308,109 B/s)
==================== SM4 Benchmark Test (1000000 times) ====================
SM4.encrypt             : 0.197393s (5066040.91 times/s)
SM4.decrypt             : 0.185619s (5387391.13 times/s)
==================== ZUC Benchmark Test (1000000 times) ====================
zuc.generate            : 0.028821s (34696561.22 times/s)

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts