Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

gradientzoo

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gradientzoo

Gradientzoo python bindings

  • 0.8.8
  • PyPI
  • Socket score

Maintainers
1

Gradientzoo Python bindings

.. image:: https://readthedocs.org/projects/python-gradientzoo/badge/?version=latest :target: http://python-gradientzoo.readthedocs.org/en/latest/?badge=latest :alt: Documentation Status

This is a Python library for Gradientzoo's API - Version and share your trained neural network models. Loading a pre-trained neural network is easy with Gradientzoo. Here's how easy it is to load a model with Tensorflow (full example below):

.. code:: python

import tensorflow as tf
from gradientzoo.tensorflow import TensorflowGradientzoo

# (build MNIST graph here)

with tf.Session() as sess:
    # Load latest weights from Gradientzoo
    TensorflowGradientzoo('ericflo/mnist').load(sess)

    # Graph is now ready to use!

Saving models is similarly straightforward:

.. code:: python

import tensorflow as tf
from gradientzoo import TensorflowGradientzoo

# (build MNIST graph here)

with tf.Session() as sess:
    for epoch in xrange(6):
        # Train the model...

        # Save the updated weights out to Gradientzoo
        TensorflowGradientzoo('ericflo/mnist').save(sess)

Features

Supports saving models in Keras_, variables in Tensorflow_, and networks in Lasagne_, and regular old files using Python with your framework of choice.

Installation

You don't need this source code unless you want to modify the package. If you just want to use the Gradientzoo Python bindings, you should run:

pip install --upgrade gradientzoo

or

easy_install --upgrade gradientzoo

See http://www.pip-installer.org/en/latest/index.html for instructions on installing pip. If you are on a system with easy_install but not pip, you can use easy_install instead. If you're not using virtualenv, you may have to prefix those commands with sudo. You can learn more about virtualenv at http://www.virtualenv.org/

To install from source, run:

python setup.py install

Documentation

Please see http://python-gradientzoo.readthedocs.org/ for the most up-to-date documentation or visit a project page to see project-specific instructions, e.g. https://www.gradientzoo.com/ericflo/mnist

Setting up a Gradientzoo Account

Sign up for Gradientzoo at https://www.gradientzoo.com/register

Contribute

Support

If you are having issues, please let us know at support@gradientzoo.com

Full Tensorflow Example

.. code:: python

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data, mnist
from gradientzoo.tensorflow import TensorflowGradientzoo

learning_rate = 0.01
batch_size = 100

# Build MNIST graph
images_placeholder = tf.placeholder(tf.float32,
                                    shape=(batch_size, mnist.IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
logits = mnist.inference(images_placeholder, 128, 32)
loss = mnist.loss(logits, labels_placeholder)
train_op = mnist.training(loss, learning_rate)
eval_correct = mnist.evaluation(logits, labels_placeholder)

# Start a Tensorflow session
with tf.Session() as sess:
    # Load latest weights from Gradientzoo
    TensorflowGradientzoo('ericflo/mnist').load(sess)

    # Read in some data
    data_sets = input_data.read_data_sets('data', False)

    # Test the trained network on the dataset
    true_count = 0
    for step in xrange(data_sets.test.num_examples // batch_size):
        images_feed, labels_feed = data_sets.test.next_batch(batch_size, False)

        true_count += sess.run(eval_correct, feed_dict={
            images_placeholder: images_feed,
            labels_placeholder: labels_feed,
        })

    precision = true_count / float(data_sets.test.num_examples)
    print('Num Examples: %d  Num Correct: %d  Precision: %0.04f' %
          (data_sets.test.num_examples, true_count, precision))

.. _gradientzoo.com/ericflo/mnist: https://www.gradientzoo.com/ericflo/mnist .. _readthedocs.org: http://python-gradientzoo.readthedocs.org/en/latest/ .. _Keras: http://keras.io/ .. _Tensorflow: https://www.tensorflow.org/ .. _Lasagne: http://lasagne.readthedocs.org/en/latest/

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc