
Security News
/Research
Wallet-Draining npm Package Impersonates Nodemailer to Hijack Crypto Transactions
Malicious npm package impersonates Nodemailer and drains wallets by hijacking crypto transactions across multiple blockchains.
Utilities for streamlined aiogram 3 bot development.
pip install gram-tools
Pack and unpack Telegram messages with all their content for easy storage and reuse.
from gram_tools.packer import pack_message, unpack_message, send_packed_message, answer_packed_message
# Pack a message
packed = await pack_message(message)
# Send packed message
await send_packed_message(bot, chat_id, packed)
# Answer with packed message
await answer_packed_message(message, packed)
import asyncio
from aiogram import Bot, Dispatcher, Router
from aiogram.types import Message
from aiogram.filters import Command
from gram_tools.packer import pack_message, send_packed_message
API_TOKEN = "YOUR_BOT_TOKEN"
bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()
# In-memory storage for packed messages
packed_messages = {}
@router.message(Command("save"))
async def save_message(message: Message):
if not message.reply_to_message:
await message.answer("Please reply to the message you want to save.")
return
# Pack the replied message
packed = await pack_message(message.reply_to_message)
# Store the packed message using user's chat ID
packed_messages[message.from_user.id] = packed
await message.answer("Message saved!")
@router.message(Command("send"))
async def send_saved_message(message: Message):
packed = packed_messages.get(message.from_user.id)
if not packed:
await message.answer("No message saved. Use /save to save a message.")
return
# Send the packed message back to the user
await send_packed_message(bot, message.chat.id, packed)
async def main():
dp.include_router(router)
await dp.start_polling(bot)
if __name__ == "__main__":
asyncio.run(main())
Efficiently handle media files with automatic file_id
caching.
from gram_tools.assets import answer_with_asset, send_with_asset
# Send media file
await send_with_asset(bot, chat_id, "path/to/file.jpg", caption="My photo") # Optional caption and other parameters
# Answer with media file
await answer_with_asset(message, "path/to/file.mp4")
import asyncio
from aiogram import Bot, Dispatcher, Router
from aiogram.types import Message
from aiogram.filters import Command
from gram_tools.assets import send_with_asset, answer_with_asset
API_TOKEN = "YOUR_BOT_TOKEN"
bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()
@router.message(Command("photo"))
async def send_photo(message: Message):
await send_with_asset(
bot,
chat_id=message.chat.id,
file_path="path/to/your/photo.jpg",
caption="Here is a photo!"
)
@router.message(Command("video"))
async def send_video(message: Message):
await answer_with_asset(
message=message,
file_path="path/to/your/video.mp4",
caption="Here is a video!"
)
async def main():
dp.include_router(router)
await dp.start_polling(bot)
if __name__ == "__main__":
asyncio.run(main())
Supported Media Types:
Generic CRUD operations for SQLAlchemy models.
from gram_tools.crud import get_crud
from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True, index=True)
telegram_id = Column(Integer, unique=True, index=True)
name = Column(String)
user_crud = get_crud(User)
# Add new instance
await user_crud.add(session, user)
# Get instance
user = await user_crud.get(session, id=1)
# Get all instances
active_users = await user_crud.get_all(session, status="active")
# Get count of instances
active_users_count = await user_crud.get_all_count(session, status="active")
# Update instance
await user_crud.update(session, user, name="New Name")
# Delete instance
await user_crud.delete(session, user)
Create paginated inline keyboards with optional search functionality.
from gram_tools.keyboards.pagination import InlinePageBuilder, SearchButton
# Create pagination with search
builder = InlinePageBuilder(
per_page=5,
layout=1,
search_button=SearchButton("🔍")
)
items = ["Item 1", "Item 2", "Item 3", ...]
keyboard = builder.get_paginated(items, page=1)
# With search
keyboard = builder.get_paginated(items, page=1, search_term="search query")
Customization Options:
per_page
: Items per pagelayout
: Number of buttons per rownext_button_text
: Next page button textprev_button_text
: Previous page button textpage_callback_prefix
: Optional callback prefix of core paginator and item selectionignore_callback_prefix
: Optional callback prefix on click ignore itemsnot_exist_page
: Text for disabled navigation buttonssearch_button
: Optional search button configurationimport asyncio
from aiogram import Bot, Dispatcher, Router
from aiogram.types import CallbackQuery, Message
from aiogram.filters import Command
from aiogram.fsm.context import FSMContext
from aiogram.fsm.state import StatesGroup, State
from gram_tools.keyboards.pagination import InlinePageBuilder, SearchButton
API_TOKEN = "YOUR_BOT_TOKEN"
bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()
items = [f"Item {i}" for i in range(1, 21)]
search_button = SearchButton(button_text="🔍 Search")
inline_builder = InlinePageBuilder(per_page=5, search_button=search_button)
class Form(StatesGroup):
waiting_for_search_term = State()
@router.message(Command("start"))
async def show_inline_keyboard(message: Message, state: FSMContext):
await state.clear()
keyboard = inline_builder.get_paginated(items, page=1)
await message.answer("Select an item:", reply_markup=keyboard)
@router.callback_query(inline_builder.page_callback.filter())
async def handle_callback(callback: CallbackQuery, callback_data: inline_builder.page_callback, state: FSMContext):
action = callback_data.action
value = callback_data.value
data = await state.get_data()
search_term = data.get('search_term')
if action in ("next", "prev"):
page = value
keyboard = inline_builder.get_paginated(items, page=page, search_term=search_term)
await callback.message.edit_reply_markup(reply_markup=keyboard)
await callback.answer()
elif action == "sel":
item_index = value
if search_term:
filtered_items = [item for item in items if search_term.lower() in str(item).lower()]
else:
filtered_items = items
if 0 <= item_index < len(filtered_items):
selected_item = filtered_items[item_index]
await callback.message.answer(f"You selected: {selected_item}")
else:
await callback.message.answer("Element not found.")
await callback.answer()
@router.callback_query(search_button.search_callback.filter())
async def handle_search_callback(callback: CallbackQuery, state: FSMContext):
await state.update_data(search_term=None)
await callback.message.answer("Type text to search:")
await state.set_state(Form.waiting_for_search_term)
await callback.answer()
@router.message(Form.waiting_for_search_term)
async def perform_search(message: Message, state: FSMContext):
search_term = message.text
await state.update_data(search_term=search_term)
await state.set_state(None)
keyboard = inline_builder.get_paginated(items, page=1, search_term=search_term)
if keyboard.inline_keyboard:
await message.answer("Results:", reply_markup=keyboard)
else:
await message.answer("Nothing found.")
@router.callback_query(inline_builder.ignore_callback.filter())
async def handle_ignore_callback(callback: CallbackQuery):
await callback.answer()
async def main():
dp.include_router(router)
await dp.start_polling(bot)
if __name__ == "__main__":
asyncio.run(main())
Create complex nested menus with ease.
from gram_tools.keyboards.menu import InlineMenuBuilder, MenuCallbackData, ActionCallbackData
# Initialize the menu builder
menu_builder = InlineMenuBuilder()
# Define menus and buttons
main_menu_buttons = [
{'text': '➡️ Go to Submenu 1', 'menu': 'submenu1'},
{'text': '📋 Option in Main Menu', 'action': 'option_main'},
{'text': 'ℹ️ Info', 'action': 'info'},
{'text': '⚙️ Settings', 'menu': 'settings_menu'}
]
submenu1_buttons = [
{'text': '📋 Option in Submenu 1', 'action': 'option_sub1'},
{'text': '⬅️ Back to Main Menu', 'menu': 'main_menu'}
]
settings_menu_buttons = [
{'text': '🔔 Notifications', 'action': 'notifications'},
{'text': '🌐 Language', 'action': 'language'},
{'text': '🔒 Privacy', 'action': 'privacy'},
{'text': '⬅️ Back to Main Menu', 'menu': 'main_menu'}
]
# Create menus with row sizes
menu_builder.create_menu('main_menu', main_menu_buttons, row_sizes=[2, 2])
menu_builder.create_menu('submenu1', submenu1_buttons, row_sizes=[1, 1])
menu_builder.create_menu('settings_menu', settings_menu_buttons, row_sizes=[2, 1])
# Register action handlers
@router.callback_query(ActionCallbackData.filter())
async def handle_action(callback: CallbackQuery, callback_data: ActionCallbackData):
action = callback_data.action
value = callback_data.value
handler = menu_builder.get_handler(action)
if handler:
await handler(callback, value)
else:
await callback.message.answer(f"Action '{action}' is not handled.")
await callback.answer()
@router.callback_query(MenuCallbackData.filter())
async def handle_menu(callback: CallbackQuery, callback_data: MenuCallbackData):
action = callback_data.action
menu_name = callback_data.menu_name
if action in ('open', 'back'):
markup = menu_builder.get_menu(menu_name)
if markup:
await callback.message.edit_reply_markup(reply_markup=markup)
await callback.answer()
# Action Handlers
async def option_main_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("You selected an option in the Main Menu.")
async def info_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("This is some information about the bot.")
async def notifications_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("Notification settings.")
async def language_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("Language settings.")
async def privacy_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("Privacy settings.")
async def option_sub1_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("You selected an option in Submenu 1.")
# Register the handlers
menu_builder.register_handler('option_main', option_main_handler)
menu_builder.register_handler('info', info_handler)
menu_builder.register_handler('notifications', notifications_handler)
menu_builder.register_handler('language', language_handler)
menu_builder.register_handler('privacy', privacy_handler)
menu_builder.register_handler('option_sub1', option_sub1_handler)
# Start command handler
@router.message(Command("start"))
async def start_cmd(message: Message):
markup = menu_builder.get_menu('main_menu')
await message.answer("Welcome to the bot. Choose an option:", reply_markup=markup)
import asyncio
from typing import Optional
from aiogram import Bot, Dispatcher, Router
from aiogram.types import CallbackQuery, Message
from aiogram.filters import Command
from gram_tools.keyboards.menu import InlineMenuBuilder, MenuCallbackData, ActionCallbackData
API_TOKEN = "YOUR_BOT_TOKEN"
bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()
menu_builder = InlineMenuBuilder()
# Define menus and buttons
# Main Menu with buttons per row specified
main_menu_buttons = [
{'text': '➡️ Go to Submenu 1', 'menu': 'submenu1'},
{'text': '📋 Option in Main Menu', 'action': 'option_main'},
{'text': 'ℹ️ Info', 'action': 'info'},
{'text': '⚙️ Settings', 'menu': 'settings_menu'}
]
# Submenu 1
submenu1_buttons = [
{'text': '📋 Option in Submenu 1', 'action': 'option_sub1'},
{'text': '⬅️ Back to Main Menu', 'menu': 'main_menu'}
]
# Settings Menu with custom row sizes
settings_menu_buttons = [
{'text': '🔔 Notifications', 'action': 'notifications'},
{'text': '🌐 Language', 'action': 'language'},
{'text': '🔒 Privacy', 'action': 'privacy'},
{'text': '⬅️ Back to Main Menu', 'menu': 'main_menu'}
]
# Create menus with row_sizes
menu_builder.create_menu('main_menu', main_menu_buttons, row_sizes=[2, 2])
menu_builder.create_menu('submenu1', submenu1_buttons, row_sizes=[1, 1])
menu_builder.create_menu('settings_menu', settings_menu_buttons, row_sizes=[2, 1])
# Register action handlers
@router.callback_query(ActionCallbackData.filter())
async def handle_action(callback: CallbackQuery, callback_data: ActionCallbackData):
action = callback_data.action
value = callback_data.value
handler = menu_builder.get_handler(action)
if handler:
await handler(callback, value)
else:
await callback.message.answer(f"Action '{action}' is not handled.")
await callback.answer()
@router.callback_query(MenuCallbackData.filter())
async def handle_menu(callback: CallbackQuery, callback_data: MenuCallbackData):
action = callback_data.action
menu_name = callback_data.menu_name
if action in ('open', 'back'):
markup = menu_builder.get_menu(menu_name)
if markup:
await callback.message.edit_reply_markup(reply_markup=markup)
await callback.answer()
# Action Handlers
async def option_main_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("You selected an option in the Main Menu.")
async def info_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("This is some information about the bot.")
async def notifications_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("Notification settings.")
async def language_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("Language settings.")
async def privacy_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("Privacy settings.")
async def option_sub1_handler(callback: CallbackQuery, value: Optional[str]):
await callback.message.answer("You selected an option in Submenu 1.")
# Register the handlers
menu_builder.register_handler('option_main', option_main_handler)
menu_builder.register_handler('info', info_handler)
menu_builder.register_handler('notifications', notifications_handler)
menu_builder.register_handler('language', language_handler)
menu_builder.register_handler('privacy', privacy_handler)
menu_builder.register_handler('option_sub1', option_sub1_handler)
# Start command handler
@router.message(Command("start"))
async def start_cmd(message: Message):
markup = menu_builder.get_menu('main_menu')
await message.answer("Welcome to the bot. Choose an option:", reply_markup=markup)
async def main():
dp.include_router(router)
await dp.start_polling(bot)
if __name__ == "__main__":
asyncio.run(main())
Easily generate visual diagrams of your Finite State Machines (FSM) defined in your aiogram bot by analyzing your bot's Python code. The visualize_fsm function parses your bot's code to extract handlers, FSM states, and transitions, and generates a visual representation of the FSM using NetworkX and Matplotlib.
Import the Visualizer Function
Add the following import statement to your script:
from gram_tools.visual import visualize_fsm
Call the Visualizer Function
Use the visualize_fsm
function, providing the path to your Python file containing the FSM definitions:
visualize_fsm('path/to/your_code.py')
This will generate an image representing the FSM.
Suppose you have a bot script bot.py
with FSM states defined:
# bot.py
from aiogram import Bot, Dispatcher, types, Router
from aiogram.filters import Command
from aiogram.fsm.state import State, StatesGroup
from aiogram.fsm.context import FSMContext
API_TOKEN = "YOUR_BOT_TOKEN"
bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()
class Registration(StatesGroup):
waiting_for_name = State()
waiting_for_email = State()
@router.message(Command('register'))
async def cmd_register(message: types.Message, state: FSMContext):
await message.answer("What's your name?")
await state.set_state(Registration.waiting_for_name)
@router.message(Registration.waiting_for_name)
async def process_name(message: types.Message, state: FSMContext):
await state.update_data(name=message.text)
await message.answer("What's your email?")
await state.set_state(Registration.waiting_for_email)
@router.message(Registration.waiting_for_email)
async def process_email(message: types.Message, state: FSMContext):
user_data = await state.get_data()
await message.answer(f"Registration complete! Name: {user_data['name']}, Email: {message.text}")
await state.clear()
To visualize the FSM, create a separate script
from gram_tools.visual import visualize_fsm
visualize_fsm('bot.py')
Run this script:
python visualize.py
This will generate an image representing the FSM in your bot.py
:
visualize_fsm
function parses your Python code to extract FSM states and transitions.StatesGroup
and State
.Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.
FAQs
Utilities for streamlined aiogram bot development.
We found that gram-tools demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
/Research
Malicious npm package impersonates Nodemailer and drains wallets by hijacking crypto transactions across multiple blockchains.
Security News
This episode explores the hard problem of reachability analysis, from static analysis limits to handling dynamic languages and massive dependency trees.
Security News
/Research
Malicious Nx npm versions stole secrets and wallet info using AI CLI tools; Socket’s AI scanner detected the supply chain attack and flagged the malware.