
Security News
Official Go SDK for MCP in Development, Stable Release Expected in August
The official Go SDK for the Model Context Protocol is in development, with a stable, production-ready release expected by August 2025.
Graviti Python SDK is a python library to access Graviti workspace and manage your datasets. It provides a pythonic way to access your datasets by Graviti OpenAPI.
NOTE: This project is still on pre-alpha stage, may have breaking changes in the future.
Graviti can be installed from PyPI:
pip3 install graviti
Or from source:
git clone https://github.com/Graviti-AI/graviti-python-sdk.git
cd graviti-python-sdk
pip install -e .
More information can be found on the documentation site
Before using Graviti SDK, please finish the following registration steps:
Workspace initialization:
from graviti import Workspace
ws = Workspace(f"{YOUR_ACCESSKEY}")
List datasets on the workspace:
>>> ws.datasets.list()
LazyPagingList [
Dataset("graviti-example/Graviti-dataset-demo")
]
Get one dataset:
>>> dataset = ws.datasets.get("Graviti-dataset-demo")
>>> dataset
Dataset("graviti-example/Graviti-dataset-demo")(
(alias): '',
(default_branch): 'main',
(created_at): 2022-07-20 04:22:35+00:00,
(updated_at): 2022-07-20 04:23:45+00:00,
(is_public): False,
(storage_config): 'AmazonS3-us-west-1'
)
View the current version of the dataset:
>>> dataset.HEAD
Branch("main")(
(commit_id): '47293b32f28c4008bc0f25b847b97d6f',
(parent): None,
(title): 'Commit-1',
(committer): 'graviti-example',
(committed_at): 2022-07-20 04:22:35+00:00,
)
List history commits:
>>> dataset.commits.list()
LazyPagingList [
Commit("47293b32f28c4008bc0f25b847b97d6f")
]
List all branches:
>>> dataset.branches.list()
LazyPagingList [
Branch("main"),
Branch("dev")
]
List all tags:
>>> dataset.tags.list()
LazyPagingList [
Tag("v1.0")
]
Checkout commit/branch/tag:
>>> dataset.checkout("47293b32f28c4008bc0f25b847b97d6f") # commit id
>>> dataset.HEAD
Commit("47293b32f28c4008bc0f25b847b97d6f")(
(parent): None,
(title): 'Commit-1',
(committer): 'graviti-example',
(committed_at): 2022-07-20 04:22:35+00:00,
)
>>> dataset.checkout("dev") # branch name
>>> dataset.HEAD
Branch("dev")(
(commit_id): '47293b32f28c4008bc0f25b847b97d6f',
(parent): None,
(title): 'Commit-1',
(committer): 'graviti-example',
(committed_at): 2022-07-20 04:22:35+00:00,
)
>>> dataset.checkout("v1.0") # tag name
>>> dataset.HEAD
Commit("47293b32f28c4008bc0f25b847b97d6f")(
(parent): None,
(title): 'Commit-1',
(committer): 'graviti-example',
(committed_at): 2022-07-20 04:22:35+00:00,
)
List all sheets:
>>> list(dataset.keys())
['train']
Get a sheet:
>>> dataset["train"]
filename box2ds
0 a.jpg DataFrame(1, 6)
1 b.jpg DataFrame(1, 6)
2 c.jpg DataFrame(1, 6)
Get the DataFrame:
>>> df = dataset["train"]
>>> df
filename box2ds
0 a.jpg DataFrame(1, 6)
1 b.jpg DataFrame(1, 6)
2 c.jpg DataFrame(1, 6)
View the schema of the sheet:
>>> df.schema
record(
fields={
'filename': string(),
'box2ds': array(
items=label.Box2D(
coords=float32(),
categories=['boat', 'car'],
attributes={
'difficult': boolean(),
'occluded': boolean(),
},
),
),
},
)
Get the data by rows or columns:
>>> df.loc[0]
filename a.jpg
box2ds DataFrame(1, 6)
>>> df["box2ds"]
0 DataFrame(1, 6)
1 DataFrame(1, 6)
2 DataFrame(1, 6)
>>> df.loc[0]["box2ds"]
xmin ymin xmax ymax category attribute
difficult occluded
0 1.0 1.0 4.0 5.0 boat False False
>>> df["box2ds"][0]
xmin ymin xmax ymax category attribute
difficult occluded
0 1.0 1.0 4.0 5.0 boat False False
FAQs
Graviti Python SDK
We found that graviti demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The official Go SDK for the Model Context Protocol is in development, with a stable, production-ready release expected by August 2025.
Security News
New research reveals that LLMs often fake understanding, passing benchmarks but failing to apply concepts or stay internally consistent.
Security News
Django has updated its security policies to reject AI-generated vulnerability reports that include fabricated or unverifiable content.