Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

great-assertions

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

great-assertions

Lightweight assertions inspired by the great-expectations library

  • 0.0.75
  • PyPI
  • Socket score

Maintainers
2

Great Assertions

|serialbandicoot| |flake8 Lint| |codecov| |CodeQL|

This library is inspired by the Great Expectations library. The library has made the various expectations found in Great Expectations available when using the inbuilt python unittest assertions.

Install

.. code:: bash

pip install great-assertions

Code example Pandas

.. code:: python

from great_assertions import GreatAssertions
import pandas as pd

class GreatAssertionTests(GreatAssertions):
    def test_expect_table_row_count_to_equal(self):
        df = pd.DataFrame({"col_1": [100, 200, 300], "col_2": [10, 20, 30]})
        self.expect_table_row_count_to_equal(df, 3)

Code example PySpark

.. code:: python

from great_assertions import GreatAssertions
from pyspark.sql import SparkSession

class GreatAssertionTests(GreatAssertions):

    def setUp(self):
        self.spark = SparkSession.builder.getOrCreate()

    def test_expect_table_row_count_to_equal(self):
        df = self.spark.createDataFrame(
            [
                {"col_1": 100, "col_2": 10},
                {"col_1": 200, "col_2": 20},
                {"col_1": 300, "col_2": 30},
            ]
        )
        self.expect_table_row_count_to_equal(df, 3)

List of available assertions

+--------------------------------------------------+---------------------+---------------------+ | | Pandas | PySpark | +==================================================+=====================+=====================+ | expect_table_row_count_to_equal | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_table_row_count_to_be_greater_than | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_table_row_count_to_be_less_than | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_table_has_no_duplicate_rows | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_value_to_equal | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_values_to_be_between | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_values_to_match_regex | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_values_to_be_in_set | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_values_to_be_of_type | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_table_columns_to_match_ordered_list | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_table_columns_to_match_set | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_date_range_to_be_more_than | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_date_range_to_be_less_than | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_date_range_to_be_between | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_mean_to_be_between | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_value_counts_percent_to_be_between | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_frame_equal | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_has_no_duplicate_rows | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_value_to_equal_if | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+ | expect_column_value_to_be_greater_if | :white_check_mark:: | :white_check_mark:: | +--------------------------------------------------+---------------------+---------------------+

Assertion Descriptions

For a description of the assertions see Assertion Definitions <docs/assertion_definitions.md>__

Running the tests

Executing the tests still require unittest, the following options have been tested with the examples provided.

Option 1


.. code:: python

    import unittest
    suite = unittest.TestLoader().loadTestsFromTestCase(GreatAssertionTests)
    runner = unittest.TextTestRunner(verbosity=2)
    runner.run(suite) 

Options 2

.. code:: python

if __name__ == '__main__':
    unittest.main()   

Pie Charts and Tables

For a more visual representation of the results, when using in Databricks or Jupyter Notebooks. The results can be outputted as tables or pie-chart.

.. code:: python

import unittest
from great_assertions import GreatAssertionResult, GreatAssertions

class DisplayTest(GreatAssertions):
    def test_pass1(self):
        assert True is True

    def test_fail(self):
        assert "Hello" == "World"    

suite = unittest.TestLoader().loadTestsFromTestCase(DisplayTest)
test_runner = unittest.runner.TextTestRunner(resultclass = GreatAssertionResult)
result = test_runner.run(suite)

result.to_barh() #Also available: result.to_pie()

.. image:: docs/img/barh.png :width: 300 :alt: Bar Horizonal

.. code:: python

result.to_results_table()

.. image:: docs/img/results_table.png :width: 300 :alt: Results Table

.. code:: python

result.to_full_results_table()

.. image:: docs/img/full_results_table.png :width: 500 :alt: Full Results Table

Runnng with XML-Runner

To run with xml-runner, there is no difference to how it's currently used. However you will not be able to get method like to_results_table as these use a different resultclass

.. code:: python

import xmlrunner
suite = unittest.TestLoader().loadTestsFromTestCase(DisplayTest)
test_runner = xmlrunner.XMLRunner(output="test-results")
test_runner.run(suite)

Production Monitoring

The assertions provided by GA will also allow the validation of the any environment including Production. Currently GA only supports saving the results to Spark, for example databricks.

Once the run has completed there is a save method, as seen below.

.. code:: python

import xmlrunner
suite = unittest.TestLoader().loadTestsFromTestCase(DisplayTest)
test_runner = xmlrunner.XMLRunner(output="test-results")
result = test_runner.run(suite)
result.save(format="databricks")

The image below shows a simple graph of the accumulation of tests over test run. However much more complex analysis can be performed with the extended data being generated by GA.

.. image:: docs/img/reporting.png :width: 500 :alt: No Tests Vs Test Run

The extended table of results contains the following:

+--------------+-------------------+----------+-----------------------------------+-------+------+---------------------------------------------------------------------------------------------------------------------------------------+ | run_id| timestamp| method| information|test_id|status| extended| +--------------+-------------------+----------+-----------------------------------+-------+------+---------------------------------------------------------------------------------------------------------------------------------------+ |20211222093029|2021-12-22 09:30:29|test_fail8|Traceback (most recent call last...| 13| Fail|{"id": 13, "name": "expect_date_range_to_be_less_than", "values": {"expected_max_date": "2019-05-13", "actual_max_date": "2019-05-13"}}| +--------------+-------------------+----------+-----------------------------------+-------+------+---------------------------------------------------------------------------------------------------------------------------------------+ |20211222093029|2021-12-22 09:30:29|test_fail9|Traceback (most recent call last...| 14| Fail|{"id": 14, "name": "expect_date_range_to_be_more_than", "values": {"expected_min_date": "2015-10-01", "actual_min_date": "2015-10-01"}}| +--------------+-------------------+----------+-----------------------------------+-------+------+---------------------------------------------------------------------------------------------------------------------------------------+

From the extended column you can get further details about the type test, which was executed and the results. For example if we look at the test expect_table_row_count_to_be_less_than we should assert that the max row should not be breached.

In the code below, the expected was 100 and the actual was 205, which caused the test to fail. Therefore Analysts can query the extended data to get a picture of the size of the breach.

.. code:: python

extended = {
    "id": 2,
    "name": expect_table_row_count_to_be_less_than,
    "values": {
        "exp_max_count": 100,
        "act_count": 205,
    },
}

In production monitoring these types of results can allow the prevention of skewed results. For example, if you had a result, where the expected values were withing a range of 0-100 and you got an exceptionally large value.

The large value could cause business functionality to be skewed such that a defect could causes damage or loss of income or incorrect reporting to a downstream system.

Therefore, GA will allow you to provide benchmarks to the production validation and an experienced analyst can create reports on top of the data.

An example of the extended dataset:

.. image:: docs/img/extended_result_table.png :width: 500 :alt: Extended Result Table

Notes

If you get an arrows function warning when running in Databricks, this will happen because a toPandas() method is being used for many of the assertions. The plan is to remove Pandas conversion for pure PySpark code. If this is an issue, please raise an issue so this method can be prioritised. For now, it’s advisable to make sure the datasets are not too big, which cause the driver to crash.

Development

To create a development environment, create a virtualenv and make a development installation

::

virtualenv ve
source ve/bin/activate

To run tests, just use pytest

::

(ve) pytest     

.. |serialbandicoot| image:: https://circleci.com/gh/serialbandicoot/great-assertions.svg?style=svg :target: LINK .. |flake8 Lint| image:: https://github.com/serialbandicoot/great-assertions/actions/workflows/flake8.yml/badge.svg :target: https://github.com/serialbandicoot/great-assertions/actions/workflows/flake8.yml .. |codecov| image:: https://codecov.io/gh/serialbandicoot/great-assertions/branch/master/graph/badge.svg?token=OKBB0E5EUC :target: https://codecov.io/gh/serialbandicoot/great-assertions .. |CodeQL| image:: https://github.com/serialbandicoot/great-assertions/workflows/CodeQL/badge.svg :target: https://github.com/serialbandicoot/great-assertions/actions?query=workflow%3ACodeQL

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc