🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
DemoInstallSign in
Socket

gridlooper

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gridlooper

A tool to run experiments based on defined grid and function with single iteration.

0.0.2
PyPI
Maintainers
1

Grid Looper

A tool to run experiments based on defined grid and function with single iteration.

import sys
sys.path.append('../')
from python_modules.gridlooper import GridLooper

Usage examples

The examples contain:

  • preparing runner function
  • preparing search grid
  • running experiments
  • analysing results

1. Preparing runner function

Runner funtion should contain logic of experiment in a way that the parameters could be supplied with embedder_params

def runner_function(runner_params : dict, c : int):

    result = int(runner_params['a']) + runner_params['b'] + c

    return result

2. Preparing search grid

Experiment combos can be defined in short form, transformed into a list and filtered with exlusion_combos. Some of the parameters in experiment definition could be ignored durring experiment with a use of exclusion_keys parameter.

experiments_settings = {
    'runner_params': {'a' : ['1', '2','4'],
                        'b' : [2, 6,10,100]},

    'c' : [100, 500],#, 1000, 5000]
    'name' : 'example experiment'
}

exclusion_keys = {'name'}

exclusion_combos = [{'runner_params': {'a': ['1','2'],
                                       'b': [100, 6,10]}}]
gl = GridLooper(
    # dictionary of all possible parameter combos
    experiments_settings = experiments_settings,
    # keys from the experiments_settings to be ignored
    exclusion_keys = exclusion_keys,
    # combos from experiments_settings to be exluded
    exclusion_combos = exclusion_combos,
    # function that be run for each of experiment combos
    runner_function = runner_function,
    # optional parameter to be supplied to runner function outside of experiment settings
    data = None,
    # path to save experiment results
    save_path = 'example_run.dill')
gl.prepare_search_grid(
    # optional if definer earlier
    experiments_settings = experiments_settings,
    exclusion_keys = exclusion_keys,
    exclusion_combos = exclusion_combos
)


gl.experiment_configs
[{'runner_params': {'a': '1', 'b': 2},
  'c': 100,
  'config_id': '54eac3ee5ce6ae6d126502ee87dbbafce54111b346b895e1d5e29c50097fa800'},
 {'runner_params': {'a': '1', 'b': 2},
  'c': 500,
  'config_id': 'b2ef1c49a36375e88203f9ff1f01db69457fc9eb6435333aaafee68bb871d9da'},
 {'runner_params': {'a': '2', 'b': 2},
  'c': 100,
  'config_id': '4b1a723841dbf9f6e2a415159d0deb938373ba21506285289e46cafdcf455f05'},
 {'runner_params': {'a': '2', 'b': 2},
  'c': 500,
  'config_id': '44a22efdfe7e385b4fbaeb84976ac0d10703a98902ce134cddd1000e09ba156a'},
 {'runner_params': {'a': '4', 'b': 2},
  'c': 100,
  'config_id': '6dc5a94f832532513b1d739fdad694029b6b9d97cec9fa869ce3d75b822c23ce'},
 {'runner_params': {'a': '4', 'b': 2},
  'c': 500,
  'config_id': '9e7ec3d2e9d7d5ccf4b8c05b9a7a145fc443f77cd7031dcdaf139a77f88d5944'},
 {'runner_params': {'a': '4', 'b': 6},
  'c': 100,
  'config_id': 'dcd7c1aeb1b3c41ab924ece9ed471d682cef319304a9675dfd1f7d27f6e29c7c'},
 {'runner_params': {'a': '4', 'b': 6},
  'c': 500,
  'config_id': 'ad38629f25dd962d157ee8b36b1fc34a54079f8b08d0d4e79fd45cecfa167d49'},
 {'runner_params': {'a': '4', 'b': 10},
  'c': 100,
  'config_id': '6cd8cc53587798f4fc2583a122a7cad6e79cb7b6c10639e6a9714d12fa2c3092'},
 {'runner_params': {'a': '4', 'b': 10},
  'c': 500,
  'config_id': '495efcc2399e24fed5a5dee4b3909f27688b7723eb62b28be6ff6eb74c4e8574'},
 {'runner_params': {'a': '4', 'b': 100},
  'c': 100,
  'config_id': '2dcdd7a719ce8fa4731c8d9adefd131d809fd29e014aa9acd3be8a6538cc8765'},
 {'runner_params': {'a': '4', 'b': 100},
  'c': 500,
  'config_id': '64f83d857c2c3a0030bd187330da30dc6d4aaf2ae1418f150b9902a269a4f3d8'}]

3. Running experiments

executing_experimets function will run runner_function for each set of parameters from defined experiment_configs for a select loop strategy.

gl.executing_experimets(
    # optional of defined earlier
    runner_function = runner_function,
    experiment_configs = gl.experiment_configs,
    data = None,
    loop_type= 'brute',
    save_path = 'example_run.dill'
)

Looping: 0%| | 0/12 [00:00<?, ?item/s]

Looping: 100%|██████████| 12/12 [00:00<00:00, 156796.41item/s]

4. Analysing results

gl.experiment_results['results']
{'54eac3ee5ce6ae6d126502ee87dbbafce54111b346b895e1d5e29c50097fa800': 103,
 'b2ef1c49a36375e88203f9ff1f01db69457fc9eb6435333aaafee68bb871d9da': 503,
 '4b1a723841dbf9f6e2a415159d0deb938373ba21506285289e46cafdcf455f05': 104,
 '44a22efdfe7e385b4fbaeb84976ac0d10703a98902ce134cddd1000e09ba156a': 504,
 '6dc5a94f832532513b1d739fdad694029b6b9d97cec9fa869ce3d75b822c23ce': 106,
 '9e7ec3d2e9d7d5ccf4b8c05b9a7a145fc443f77cd7031dcdaf139a77f88d5944': 506,
 'dcd7c1aeb1b3c41ab924ece9ed471d682cef319304a9675dfd1f7d27f6e29c7c': 110,
 'ad38629f25dd962d157ee8b36b1fc34a54079f8b08d0d4e79fd45cecfa167d49': 510,
 '6cd8cc53587798f4fc2583a122a7cad6e79cb7b6c10639e6a9714d12fa2c3092': 114,
 '495efcc2399e24fed5a5dee4b3909f27688b7723eb62b28be6ff6eb74c4e8574': 514,
 '2dcdd7a719ce8fa4731c8d9adefd131d809fd29e014aa9acd3be8a6538cc8765': 204,
 '64f83d857c2c3a0030bd187330da30dc6d4aaf2ae1418f150b9902a269a4f3d8': 604}

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts