
Research
PyPI Package Disguised as Instagram Growth Tool Harvests User Credentials
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
A tool to run experiments based on defined grid and function with single iteration.
A tool to run experiments based on defined grid and function with single iteration.
import sys
sys.path.append('../')
from python_modules.gridlooper import GridLooper
The examples contain:
Runner funtion should contain logic of experiment in a way that the parameters could be supplied with embedder_params
def runner_function(runner_params : dict, c : int):
result = int(runner_params['a']) + runner_params['b'] + c
return result
Experiment combos can be defined in short form, transformed into a list and filtered with exlusion_combos
. Some of the parameters in experiment definition could be ignored durring experiment with a use of exclusion_keys
parameter.
experiments_settings = {
'runner_params': {'a' : ['1', '2','4'],
'b' : [2, 6,10,100]},
'c' : [100, 500],#, 1000, 5000]
'name' : 'example experiment'
}
exclusion_keys = {'name'}
exclusion_combos = [{'runner_params': {'a': ['1','2'],
'b': [100, 6,10]}}]
gl = GridLooper(
# dictionary of all possible parameter combos
experiments_settings = experiments_settings,
# keys from the experiments_settings to be ignored
exclusion_keys = exclusion_keys,
# combos from experiments_settings to be exluded
exclusion_combos = exclusion_combos,
# function that be run for each of experiment combos
runner_function = runner_function,
# optional parameter to be supplied to runner function outside of experiment settings
data = None,
# path to save experiment results
save_path = 'example_run.dill')
gl.prepare_search_grid(
# optional if definer earlier
experiments_settings = experiments_settings,
exclusion_keys = exclusion_keys,
exclusion_combos = exclusion_combos
)
gl.experiment_configs
[{'runner_params': {'a': '1', 'b': 2},
'c': 100,
'config_id': '54eac3ee5ce6ae6d126502ee87dbbafce54111b346b895e1d5e29c50097fa800'},
{'runner_params': {'a': '1', 'b': 2},
'c': 500,
'config_id': 'b2ef1c49a36375e88203f9ff1f01db69457fc9eb6435333aaafee68bb871d9da'},
{'runner_params': {'a': '2', 'b': 2},
'c': 100,
'config_id': '4b1a723841dbf9f6e2a415159d0deb938373ba21506285289e46cafdcf455f05'},
{'runner_params': {'a': '2', 'b': 2},
'c': 500,
'config_id': '44a22efdfe7e385b4fbaeb84976ac0d10703a98902ce134cddd1000e09ba156a'},
{'runner_params': {'a': '4', 'b': 2},
'c': 100,
'config_id': '6dc5a94f832532513b1d739fdad694029b6b9d97cec9fa869ce3d75b822c23ce'},
{'runner_params': {'a': '4', 'b': 2},
'c': 500,
'config_id': '9e7ec3d2e9d7d5ccf4b8c05b9a7a145fc443f77cd7031dcdaf139a77f88d5944'},
{'runner_params': {'a': '4', 'b': 6},
'c': 100,
'config_id': 'dcd7c1aeb1b3c41ab924ece9ed471d682cef319304a9675dfd1f7d27f6e29c7c'},
{'runner_params': {'a': '4', 'b': 6},
'c': 500,
'config_id': 'ad38629f25dd962d157ee8b36b1fc34a54079f8b08d0d4e79fd45cecfa167d49'},
{'runner_params': {'a': '4', 'b': 10},
'c': 100,
'config_id': '6cd8cc53587798f4fc2583a122a7cad6e79cb7b6c10639e6a9714d12fa2c3092'},
{'runner_params': {'a': '4', 'b': 10},
'c': 500,
'config_id': '495efcc2399e24fed5a5dee4b3909f27688b7723eb62b28be6ff6eb74c4e8574'},
{'runner_params': {'a': '4', 'b': 100},
'c': 100,
'config_id': '2dcdd7a719ce8fa4731c8d9adefd131d809fd29e014aa9acd3be8a6538cc8765'},
{'runner_params': {'a': '4', 'b': 100},
'c': 500,
'config_id': '64f83d857c2c3a0030bd187330da30dc6d4aaf2ae1418f150b9902a269a4f3d8'}]
executing_experimets
function will run runner_function
for each set of parameters from defined experiment_configs
for a select loop strategy.
gl.executing_experimets(
# optional of defined earlier
runner_function = runner_function,
experiment_configs = gl.experiment_configs,
data = None,
loop_type= 'brute',
save_path = 'example_run.dill'
)
Looping: 0%| | 0/12 [00:00<?, ?item/s]
Looping: 100%|██████████| 12/12 [00:00<00:00, 156796.41item/s]
gl.experiment_results['results']
{'54eac3ee5ce6ae6d126502ee87dbbafce54111b346b895e1d5e29c50097fa800': 103,
'b2ef1c49a36375e88203f9ff1f01db69457fc9eb6435333aaafee68bb871d9da': 503,
'4b1a723841dbf9f6e2a415159d0deb938373ba21506285289e46cafdcf455f05': 104,
'44a22efdfe7e385b4fbaeb84976ac0d10703a98902ce134cddd1000e09ba156a': 504,
'6dc5a94f832532513b1d739fdad694029b6b9d97cec9fa869ce3d75b822c23ce': 106,
'9e7ec3d2e9d7d5ccf4b8c05b9a7a145fc443f77cd7031dcdaf139a77f88d5944': 506,
'dcd7c1aeb1b3c41ab924ece9ed471d682cef319304a9675dfd1f7d27f6e29c7c': 110,
'ad38629f25dd962d157ee8b36b1fc34a54079f8b08d0d4e79fd45cecfa167d49': 510,
'6cd8cc53587798f4fc2583a122a7cad6e79cb7b6c10639e6a9714d12fa2c3092': 114,
'495efcc2399e24fed5a5dee4b3909f27688b7723eb62b28be6ff6eb74c4e8574': 514,
'2dcdd7a719ce8fa4731c8d9adefd131d809fd29e014aa9acd3be8a6538cc8765': 204,
'64f83d857c2c3a0030bd187330da30dc6d4aaf2ae1418f150b9902a269a4f3d8': 604}
FAQs
A tool to run experiments based on defined grid and function with single iteration.
We found that gridlooper demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.
Security News
Research
Socket uncovered two npm packages that register hidden HTTP endpoints to delete all files on command.