🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more

gridmaster

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gridmaster

A lightweight multi-stage grid search AutoML framework for classifiers. GridMaster v0.2.0: Log-scale search + plot customization features

0.5.4
Maintainers
1

GridMaster Banner

GridMaster: A Lightweight Multi-Stage Grid Search AutoML Framework for Classifiers

GridMaster is a Python module built for data scientists who want flexible and interpretable model selection and tuning on structured classification datasets. It automates the hyperparameter tuning process using coarse-to-fine grid search and supports model evaluation, visualization, export, and reproducibility.

⚠️ GridMaster is currently designed for classification tasks only, and does not yet support regressors.

📖 Full Documentation

🔍 Supported Models

Model NameBackend ModuleNotes
Logistic Regressionsklearn.linear_modelGreat interpretability via coefficients
Random Forestsklearn.ensembleRobust baseline, provides feature importance
XGBoostxgboostHighly accurate, supports regularization
LightGBMlightgbmFast, efficient gradient boosting
CatBoostcatboostHandles categorical features natively

DecisionTreeClassifier is intentionally excluded due to its high variance and limited generalization ability. Use ensemble variants instead.

🚀 Installation

pip install scikit-learn xgboost lightgbm catboost pandas numpy matplotlib joblib

Then clone the repository:

git clone https://github.com/wins-wang/GridMaster.git

⚙️ How GridMaster Works

from gridmaster import GridMaster
gm = GridMaster(models=[...], X_train=..., y_train=...)

You can then call:

  • gm.coarse_search(...)
  • gm.fine_search(...)
  • gm.multi_stage_search(...)
  • gm.compare_best_models(...)
  • Visualization + export + import...

All with built-in output redirection for noisy models.

gm.multi_stage_search("xgboost", scoring="roc_auc")
gm.compare_best_models(X_test, y_test, metrics=["f1", "roc_auc"])
gm.plot_cv_score_curve("xgboost")
gm.export_model_package("xgboost")

Use suppress_output=False if you want to see model logs.

📘 Demo Usage: Breast Cancer Classifier

# demo_usage.ipynb

from gridmaster import GridMaster
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import pandas as pd
import os
import warnings

warnings.filterwarnings("ignore")

X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

gm = GridMaster(
    models=["logistic", "random_forest", "xgboost", "lightgbm", "catboost"],
    X_train=X_train,
    y_train=y_train
)

for model in ["logistic", "random_forest", "xgboost", "lightgbm", "catboost"]:
    gm.multi_stage_search(model, scoring="f1")

best_model, scores = gm.compare_best_models(X_test, y_test, metrics=["accuracy", "f1", "roc_auc"])
print("Best model:", best_model)
print(scores)

# Visualize all
for model in ["logistic", "random_forest", "xgboost", "lightgbm", "catboost"]:
    gm.plot_cv_score_curve(model)
    gm.plot_confusion_matrix(model, X_test, y_test)
    if model == "logistic":
        gm.plot_model_coefficients(model)
    else:
        gm.plot_feature_importance(model)

# Export and reload
os.makedirs("outputs", exist_ok=True)
gm.export_all_models(folder_path="outputs")
gm.import_all_models(folder_path="outputs")

# Final report
final_model = gm.results[best_model]["best_model"]
X_test_df = pd.DataFrame(X_test, columns=X_train.columns)
y_pred = final_model.predict(X_test_df)
print(classification_report(y_test, y_pred))

📦 Packaging Info

📜 License

MIT License. See LICENSE.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts