
Security News
New CVE Forecasting Tool Predicts 47,000 Disclosures in 2025
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.
GridSearcher simplifies running grid searches for machine learning projects in Python, emphasizing parallel execution and GPU scheduling without dependencies on SLURM or other workload managers.
GridSearcher is a pure Python project designed to simplify the process of running grid searches for Machine Learning projects. It serves as a robust alternative to traditional bash scripts, providing a more flexible and user-friendly way to manage and execute multiple programs in parallel.
ā ļø It is designed for systems where users have direct SSH access to machines and can run their python scripts right away.
Install GridSearcher via pip:
pip install gridsearcher
We provide a minimal working example in the file example.py.
Just set debug=True
with debug=False
in the run
method call to run on GPUs. The output of example.py
is the following:
GridSearcher PID: 8940
command 1: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-2_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=1_2024-06-19_23-04-23 --seed 1 --lr 1e-2 --wd 1e-2 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-2_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8/seed=1_2024-06-19_23-04-23
command 2: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-2_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=1_2024-06-19_23-04-23 --seed 1 --lr 1e-2 --wd 1e-3 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-2_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8/seed=1_2024-06-19_23-04-23
command 3: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-3_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=1_2024-06-19_23-04-23 --seed 1 --lr 1e-3 --wd 1e-2 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-3_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8/seed=1_2024-06-19_23-04-23
command 4: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-3_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=1_2024-06-19_23-04-23 --seed 1 --lr 1e-3 --wd 1e-3 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-3_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8/seed=1_2024-06-19_23-04-23
command 5: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-2_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=2_2024-06-19_23-04-23 --seed 2 --lr 1e-2 --wd 1e-2 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-2_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8/seed=2_2024-06-19_23-04-23
command 6: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-2_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=2_2024-06-19_23-04-23 --seed 2 --lr 1e-2 --wd 1e-3 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-2_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8/seed=2_2024-06-19_23-04-23
command 7: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-3_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=2_2024-06-19_23-04-23 --seed 2 --lr 1e-3 --wd 1e-2 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-3_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8/seed=2_2024-06-19_23-04-23
command 8: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-3_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=2_2024-06-19_23-04-23 --seed 2 --lr 1e-3 --wd 1e-3 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-3_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8/seed=2_2024-06-19_23-04-23
command 9: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-2_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=3_2024-06-19_23-04-23 --seed 3 --lr 1e-2 --wd 1e-2 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-2_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8/seed=3_2024-06-19_23-04-23
command 10: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-2_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=3_2024-06-19_23-04-23 --seed 3 --lr 1e-2 --wd 1e-3 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-2_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8/seed=3_2024-06-19_23-04-23
command 11: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-3_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=3_2024-06-19_23-04-23 --seed 3 --lr 1e-3 --wd 1e-2 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-3_wd=1e-2_beta1=0.9_beta2=0.999_eps=1e-8/seed=3_2024-06-19_23-04-23
command 12: python3 myscript.py --batch_size 128 --epochs 100 --lr_decay_at 82 123 --wandb_project cifar10-training --wandb_group cifar10_rn18_adamw_E=100_bs=128 --wandb_job_type lr=1e-3_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8 --wandb_name seed=3_2024-06-19_23-04-23 --seed 3 --lr 1e-3 --wd 1e-3 --beta1 0.9 --beta2 0.999 --eps 1e-8 --root_folder ./results/cifar10-training/cifar10_rn18_adamw_E=100_bs=128/lr=1e-3_wd=1e-3_beta1=0.9_beta2=0.999_eps=1e-8/seed=3_2024-06-19_23-04-23
We also added a wrapper for SBATCH that allows running SLURM jobs directly from Python!
SBATCH(
script='script.sh', # the shell script that will be launched using sbatch
env_vars=dict( # these variables will be set in the --export argument of sbatch and will be available in the h100-eval.sh script
root=ROOT,
wandb_project=wandb_project,
wandb_group=wandb_group,
wandb_job_type=wandb_job_type,
wandb_name=wandb_name,
task='imagenet',
batch_size=128,
),
sbatch_args={ # the variables below will be added to the sbatch command (e.g. --job_name)
'exclude': 'machine-1,machine-2',
'job-name': f'job-name',
'error': 'slurm_output/%j-%x.err',
'output': 'slurm_output/%j-%x.out',
'ntasks': 1,
'cpus-per-task': 20,
'time': '1-00:00:00',
'mem': '200G',
'partition': 'gpu',
'gres': 'gpu:H100:1',
}
).run()
We welcome contributions! If you have suggestions for new features or improvements, feel free to open an issue or submit a pull request.
create_state_finished
parameter to control whether the process writes the file state.finished
when returns with error code 0 or not.py
extension anymoreos.system
and create file state.finished
only if code == 0
scheduling["params_values"]
are of type listFAQs
GridSearcher simplifies running grid searches for machine learning projects in Python, emphasizing parallel execution and GPU scheduling without dependencies on SLURM or other workload managers.
We found that gridsearcher demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.Ā It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.
Security News
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
Research
Security News
Eight new malicious Firefox extensions impersonate games, steal OAuth tokens, hijack sessions, and exploit browser permissions to spy on users.