gtcacs
A library for topic modeling based on the algorithm:
Generative Text Compression with Agglomerative Clustering Summarization (GTCACS).
|
Installation
########################################################################################################
Use the package manager pip to install gtcacs.
.. code:: bash
pip3 install gtcacs
Tested Python version:
.. code:: bash
python3.8
Tested dependencies:
.. code:: bash
numpy==1.19.5
scikit-learn==0.24.1
scipy==1.6.1
tensorflow==2.4.1
tqdm==4.58.0
|
Usage
################################################################################################################################################
.. code:: python
from sklearn.datasets import fetch_20newsgroups
from gtcacs.topic_modeling import GTCACS
# load dataset
corpus, labels = fetch_20newsgroups(subset='all', return_X_y=True, download_if_missing=False)
# set stop words
eng_stopwords = {'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"}
# instantiate the GTCACS object
gtcacs_obj = GTCACS(
num_topics=20, # number of topics
max_num_words=50, # maximum number of terms to consider
max_df=0.95, # maximum document frequency
min_df=15, # minimum document frequency
stopwords=eng_stopwords, # stopwords set
ngram_range=(1, 2), # range for ngram
max_features=None, # maximum number of terms to consider (max vocabulary size)
lowercase=True, # flag for convert to lowercase
num_epoches=5, # number of epochs
batch_size=128, # number of documents in a batch
gen_learning_rate=0.005, # learning rate for optimize the generative part
discr_learning_rate=0.005, # learning rate for optimize the discriminative part
random_seed_size=100, # dimension of generator input layer
generator_hidden_dim=512, # dimension of generator hidden layer
document_dim=None, # dimension of generator output layer and discriminator's input/output layer
latent_space_dim=64, # dimension of discriminator latent space
discriminator_hidden_dim=256 # dimension of discriminator hidden layer
)
# compuation on corpus (dimensional reduction, clustering, summarization)
gtcacs_obj.extract_topics(corpus=corpus)
# get the extracted clusters of words
topics = gtcacs_obj.get_topics_words()
for i, topic in enumerate(topics):
print(">>> TOPIC", i + 1, topic)
# get the topics distribution scores for each document
corpus_transf = gtcacs_obj.get_topics_distribution_scores()
print(corpus_transf)
|
License
################################################################################################################
MIT <https://choosealicense.com/licenses/mit/>
_