Socket
Book a DemoInstallSign in
Socket

hibiz-any-llm

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

hibiz-any-llm

A comprehensive Python wrapper for Large Language Models with database integration and usage tracking

pipPyPI
Version
0.0.17
Maintainers
1

LLM Wrapper - Universal Large Language Model Library

A comprehensive, modular Python library for seamless integration with multiple Large Language Model providers. Built with enterprise-grade features including token tracking, usage analytics, and robust error handling.

🚀 Features

  • Multi-Provider Support: Azure OpenAI, OpenAI, Anthropic Claude, and extensible for more
  • Unified API: Single interface for all LLM providers
  • Token Tracking: Comprehensive token usage logging with PostgreSQL backend
  • Usage Analytics: Detailed statistics and monitoring capabilities
  • Enterprise Ready: Connection pooling, error handling, and production-grade logging
  • Type Safety: Full type hints and data validation
  • Modular Architecture: Clean separation of concerns with factory pattern
  • Backward Compatible: Legacy API support for existing integrations

📦 Installation

pip install hibiz-any-llm

🏗️ Architecture

llm_wrapper/
├── core/           # Core functionality and factory
├── providers/      # LLM provider implementations
├── models/         # Data models and schemas
├── database/       # Database management
└──utils/          # Token Calculation and validators

🛠️ Quick Start

1. Basic Setup

from hibiz_any_llm import LLMWrapper, LLMProvider

# Configure your provider
azure_config = {
    'service_url': 'https://your-resource.openai.azure.com',
    'api_key': 'your-api-key',
    'deployment_name': 'gpt-4',
    'api_version': '2023-12-01-preview'
}

# Database configuration
db_config = {
    'host': 'localhost',
    'port': 5432,
    'dbname': 'llm_usage',
    'user': 'username',
    'password': 'password'
}

# Initialize wrapper
wrapper = LLMWrapper(
    provider_type=LLMProvider.AZURE_OPENAI,
    provider_config=azure_config,
    db_config=db_config,
    enable_logging=True
)

2. Chat Completion

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What is machine learning?"}
]

response = wrapper.send_request(
    prompt_payload=messages,
    customer_id="customer_123",
    organization_id="org_456",
    app_name="chatbot",
    module_name="education",
    function_name="explain_concepts",
    model="gpt-4",
    temperature=0.7,
    max_tokens=500
)

print(f"Response: {response['output_text']}")
print(f"Tokens used: {response['total_tokens']}")

3. Embeddings

embedding_response = wrapper.create_embeddings(
    input_texts=["Machine learning is amazing", "AI will change the world"],
    customer_id="customer_123",
    organization_id="org_456",
    app_name="search_engine",
    module_name="vectorization",
    function_name="create_embeddings",
    model="text-embedding-3-small"
)

print(f"Embeddings: {embedding_response['embeddings']}")

🔧 Provider Configurations

Azure OpenAI

azure_config = {
    'service_url': 'https://your-resource.openai.azure.com',
    'api_key': 'your-api-key',
    'deployment_name': 'gpt-4',
    'api_version': '2023-12-01-preview',
    'timeout': 600
}

wrapper = LLMWrapper(LLMProvider.AZURE_OPENAI, azure_config, db_config)

OpenAI

openai_config = {
    'api_key': 'sk-your-openai-api-key',
    'organization_id': 'org-your-org-id',  # Optional
    'timeout': 600
}

wrapper = LLMWrapper(LLMProvider.OPENAI, openai_config, db_config)

Anthropic Claude

anthropic_config = {
    'api_key': 'sk-ant-your-anthropic-api-key',
    'default_model': 'claude-opus-4-20250514',
    'timeout': 300
}

wrapper = LLMWrapper(LLMProvider.ANTHROPIC, anthropic_config, db_config)

Google Gemini

google_config = {
    'api_key': 'your-gemini-api-key',
    'default_model': 'gemini-2.0-flash',
    'timeout': 300
}

wrapper = LLMWrapper(LLMProvider.GOOGLE, google_config, db_config)

Twitter GROK

grok_config = {
    'api_key': 'your-grok-api-key',
    'default_model': 'grok-4',
    'timeout': 300
}

wrapper = LLMWrapper(LLMProvider.GROK, grok_config, db_config)

Alibaba QWEN

qwen_config = {
    'api_key': 'your-qwen-api-key',
    'default_model': 'qwen-plus',
    'timeout': 300
}

wrapper = LLMWrapper(LLMProvider.QWEN, qwen_config, db_config)

DeepSeek

deepseek_config = {
    'api_key': 'your-deepseek-api-key',
    'default_model': 'deepseek-chat',
    'timeout': 300
}

wrapper = LLMWrapper(LLMProvider.DEEP_SEEK, deepseek_config, db_config)

📊 Usage Analytics

Get Usage Statistics

stats = wrapper.get_usage_stats(
    customer_id="customer_123",
    start_date="2024-01-01T00:00:00",
    end_date="2024-12-31T23:59:59",
    app_name="chatbot"
)

print(f"Total requests: {stats['summary']['total_requests']}")
print(f"Total tokens: {stats['summary']['total_tokens']}")
print(f"Success rate: {stats['summary']['success_rate']}")

Filter by Different Dimensions

# By application
app_stats = wrapper.get_usage_stats(app_name="chatbot")

# By model
model_stats = wrapper.get_usage_stats(filters={"model_name": "gpt-4"})

# By request type
embedding_stats = wrapper.get_usage_stats(request_type="embedding")

🎯 Advanced Features

JSON Response Format

response = wrapper.send_request(
    prompt_payload=[
        {"role": "user", "content": "List 3 benefits of exercise in JSON format"}
    ],
    customer_id="customer_789",
    organization_id="org_456",
    app_name="health_app",
    module_name="exercise",
    function_name="get_benefits",
    response_type="json"  # Automatically ensures JSON output
)

# Access parsed JSON
json_data = response['processed_output']

Context Manager Support

with LLMWrapper(LLMProvider.AZURE_OPENAI, azure_config, db_config) as wrapper:
    response = wrapper.send_request(
        prompt_payload=messages,
        customer_id="customer_123",
        organization_id="org_456",
        app_name="temp_app",
        module_name="test",
        function_name="context_test"
    )
    # Automatic cleanup on exit

Multi-Provider Switching

providers = {
    LLMProvider.AZURE_OPENAI: azure_config,
    LLMProvider.OPENAI: openai_config,
    LLMProvider.ANTHROPIC: anthropic_config
}

for provider_type, config in providers.items():
    wrapper = LLMWrapper(provider_type, config, db_config)
    response = wrapper.send_request(
        prompt_payload=[{"role": "user", "content": "Hello!"}],
        customer_id="multi_test",
        organization_id="org_test",
        app_name="provider_comparison",
        module_name="testing",
        function_name="hello_test"
    )
    print(f"{provider_type.value}: {response['output_text']}")
    wrapper.close()

🗄️ Database Schema

The library automatically creates the following PostgreSQL table:

CREATE TABLE token_usage_log (
    id SERIAL PRIMARY KEY,
    customer_id VARCHAR(255) NOT NULL,
    organization_id VARCHAR(255) NOT NULL,
    provider VARCHAR(100) NOT NULL,
    model_name VARCHAR(255) NOT NULL,
    app_name VARCHAR(255),
    module_name VARCHAR(255),
    function_name VARCHAR(255),
    request_type VARCHAR(50) NOT NULL,
    request_params JSONB,
    response_params JSONB,
    input_tokens INTEGER DEFAULT 0,
    output_tokens INTEGER DEFAULT 0,
    total_tokens INTEGER DEFAULT 0,
    request_timestamp TIMESTAMP DEFAULT NOW(),
    response_time_ms INTEGER DEFAULT 0,
    status VARCHAR(50) DEFAULT 'success',
    request_id VARCHAR(255),
    cost FLOAT
);

Indexes for Performance

  • idx_customer_date on (customer_id, request_timestamp)
  • idx_org_model on (organization_id, model_name)
  • idx_app_module on (app_name, module_name)

🧪 Error Handling

from llm_wrapper import APIError, DatabaseError, ConfigurationError

try:
    response = wrapper.send_request(...)
except APIError as e:
    print(f"API Error: {e}")
except DatabaseError as e:
    print(f"Database Error: {e}")
except ConfigurationError as e:
    print(f"Configuration Error: {e}")

🔒 Security Best Practices

  • Environment Variables: Store API keys in environment variables
import os

config = {
    'api_key': os.getenv('AZURE_OPENAI_API_KEY'),
    'service_url': os.getenv('AZURE_OPENAI_SERVICE_URL'),
    # ...
}
  • Database Security: Use connection pooling and proper credentials
db_config = {
    'host': os.getenv('DB_HOST'),
    'user': os.getenv('DB_USER'),
    'password': os.getenv('DB_PASSWORD'),
    'pool_size': 10,
    'max_overflow': 20
}

📈 Performance Optimization

Connection Pooling

The library uses SQLAlchemy's connection pooling:

db_config = {
    'host': 'localhost',
    'port': 5432,
    'dbname': 'llm_usage',
    'user': 'username',
    'password': 'password',
    'pool_size': 10,        # Number of persistent connections
    'max_overflow': 20,     # Additional connections when needed
    'pool_pre_ping': True   # Validate connections before use
}

Batch Processing

For multiple requests, use connection reuse:

with LLMWrapper(provider_type, config, db_config) as wrapper:
    for request_data in batch_requests:
        response = wrapper.send_request(**request_data)
        # Process response

📝 Logging

Configure logging for production:

import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('llm_wrapper.log'),
        logging.StreamHandler()
    ]
)

🔄 Migration from Legacy Version

Old API (v0.1.x)

# Old way
wrapper = LLMWrapper(service_url, api_key, deployment_name, api_version, db_config)
response = wrapper.send_request(messages, customer_id, ...)

New API (v0.2.x)

# New way
wrapper = LLMWrapper(LLMProvider.AZURE_OPENAI, provider_config, db_config)
response = wrapper.send_request(messages, customer_id, ...)

The response format remains the same for backward compatibility.

🤝 Contributing

  • Fork the repository
  • Create a feature branch: git checkout -b feature/new-provider
  • Make your changes
  • Add tests for new functionality
  • Run tests: pytest
  • Submit a pull request

Adding New Providers

  • Create a new provider class inheriting from BaseLLMProvider
  • Implement required methods: send_chat_completion, create_embeddings, validate_config
  • Add the provider to LLMProviderFactory
  • Add provider-specific configuration in constants
  • Write tests

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

🏷️ Changelog

v0.2.0 (Latest)

  • ✅ Multi-provider support (Azure OpenAI, OpenAI, Anthropic)
  • ✅ Modular architecture with factory pattern
  • ✅ Enhanced token tracking and analytics
  • ✅ Improved error handling and validation
  • ✅ Type safety with full type hints
  • ✅ Performance optimizations
  • ✅ Backward compatibility

v0.1.0

  • ✅ Basic Azure OpenAI support
  • ✅ Token tracking
  • ✅ PostgreSQL logging

🎯 Roadmap

  • Google PaLM/Gemini support
  • Cost calculation and tracking
  • Rate limiting and retry mechanisms
  • Async support
  • Streaming responses
  • Fine-tuning integration
  • Monitoring dashboard

Made with ❤️ by Hibiz Solutions

Keywords

llm

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts