
Research
/Security News
Critical Vulnerability in NestJS Devtools: Localhost RCE via Sandbox Escape
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
Wrapper for the Hybrid Genetic Search algorithm for Capacitated Vehicle Routing Problems (HGS-CVRP)
This is a rebranded fork of PyHygese by Changhyun Kwon.
A solver for the Capacitated Vehicle Routing Problem (CVRP)
This package provides a simple Python wrapper for the Hybrid Genetic Search solver for Capacitated Vehicle Routing Problems (HGS-CVRP).
pip install hybgensea
import numpy as np
import hybgensea as hgs
n = 20
x = (np.random.rand(n) * 1000)
y = (np.random.rand(n) * 1000)
# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2) # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)
# data preparation
data = dict()
data['x_coordinates'] = x
data['y_coordinates'] = y
# You may also supply distance_matrix instead of coordinates, or in addition to coordinates
# If you supply distance_matrix, it will be used for cost calculation.
# The additional coordinates will be helpful in speeding up the algorithm.
# data['distance_matrix'] = dist_mtx
data['service_times'] = np.zeros(n)
demands = np.ones(n)
demands[0] = 0 # depot demand = 0
data['demands'] = demands
data['vehicle_capacity'] = np.ceil(n/3).astype(int)
data['num_vehicles'] = 3
data['depot'] = 0
result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)
NOTE: The result.routes
above does not include the depot. All vehicles start from the depot and return to the depot.
# A CVRP from https://developers.google.com/optimization/routing/cvrp
import numpy as np
import hybgensea as hgs
data = dict()
data['distance_matrix'] = [
[0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
[548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
[776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
[696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
[582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
[274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
[502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
[194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
[308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
[194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
[536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
[502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
[388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
[354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
[468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
[776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
[662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0]
]
data['num_vehicles'] = 4
data['depot'] = 0
data['demands'] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
data['vehicle_capacity'] = 15 # different from OR-Tools: homogeneous capacity
data['service_times'] = np.zeros(len(data['demands']))
# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2) # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)
# Solve
result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)
# A TSP example from https://developers.google.com/optimization/routing/tsp
import hybgensea as hgs
data = dict()
data['distance_matrix'] = [
[0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
[2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
[713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
[1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
[1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
[1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
[2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
[213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
[2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
[875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
[1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
[2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
[1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
]
# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=0.8) # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)
# Solve
result = hgs_solver.solve_tsp(data)
print(result.cost)
print(result.routes)
Configurable algorithm parameters are defined in the AlgorithmParameters
dataclass with default values:
@dataclass
class AlgorithmParameters:
nbGranular: int = 20
mu: int = 25
lambda_: int = 40
nbElite: int = 4
nbClose: int = 5
nbIterPenaltyManagement: int = 100
targetFeasible: float = 0.2
penaltyDecrease: float = 0.85
penaltyIncrease: float = 1.2
seed: int = 0
nbIter: int = 20000
nbIterTraces: int = 500
timeLimit: float = 0.0
useSwapStar: bool = True
A Julia wrapper is available: Hygese.jl
FAQs
Wrapper for the Hybrid Genetic Search algorithm for Capacitated Vehicle Routing Problems (HGS-CVRP)
We found that hybgensea demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
/Security News
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
Product
Customize license detection with Socket’s new license overlays: gain control, reduce noise, and handle edge cases with precision.
Product
Socket now supports Rust and Cargo, offering package search for all users and experimental SBOM generation for enterprise projects.