You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

hybgensea

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

hybgensea

Wrapper for the Hybrid Genetic Search algorithm for Capacitated Vehicle Routing Problems (HGS-CVRP)

0.0.1
pipPyPI
Maintainers
1

This is a rebranded fork of PyHygese by Changhyun Kwon.

A solver for the Capacitated Vehicle Routing Problem (CVRP)

This package provides a simple Python wrapper for the Hybrid Genetic Search solver for Capacitated Vehicle Routing Problems (HGS-CVRP).

Installation

pip install hybgensea

CVRP Example (random)

import numpy as np 
import hybgensea as hgs

n = 20
x = (np.random.rand(n) * 1000)
y = (np.random.rand(n) * 1000)

# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2)  # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)

# data preparation
data = dict()
data['x_coordinates'] = x
data['y_coordinates'] = y

# You may also supply distance_matrix instead of coordinates, or in addition to coordinates
# If you supply distance_matrix, it will be used for cost calculation.
# The additional coordinates will be helpful in speeding up the algorithm.
# data['distance_matrix'] = dist_mtx

data['service_times'] = np.zeros(n)
demands = np.ones(n)
demands[0] = 0 # depot demand = 0
data['demands'] = demands
data['vehicle_capacity'] = np.ceil(n/3).astype(int)
data['num_vehicles'] = 3
data['depot'] = 0

result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)

NOTE: The result.routes above does not include the depot. All vehicles start from the depot and return to the depot.

another CVRP example

# A CVRP from https://developers.google.com/optimization/routing/cvrp
import numpy as np 
import hybgensea as hgs 

data = dict()
data['distance_matrix'] = [
    [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
    [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
    [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
    [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
    [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
    [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
    [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
    [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
    [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
    [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
    [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
    [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
    [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
    [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
    [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
    [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
    [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0]
]
data['num_vehicles'] = 4
data['depot'] = 0
data['demands'] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
data['vehicle_capacity'] = 15  # different from OR-Tools: homogeneous capacity
data['service_times'] = np.zeros(len(data['demands']))

# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=3.2)  # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)

# Solve
result = hgs_solver.solve_cvrp(data)
print(result.cost)
print(result.routes)

TSP example

# A TSP example from https://developers.google.com/optimization/routing/tsp
import hybgensea as hgs 

data = dict()
data['distance_matrix'] = [
    [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
    [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
    [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260],
    [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],
    [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
    [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
    [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
    [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099],
    [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
    [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
    [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200],
    [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
    [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0],
] 

# Solver initialization
ap = hgs.AlgorithmParameters(timeLimit=0.8)  # seconds
hgs_solver = hgs.Solver(parameters=ap, verbose=True)

# Solve
result = hgs_solver.solve_tsp(data)
print(result.cost)
print(result.routes)

Algorithm Parameters

Configurable algorithm parameters are defined in the AlgorithmParameters dataclass with default values:

@dataclass
class AlgorithmParameters:
    nbGranular: int = 20
    mu: int = 25
    lambda_: int = 40
    nbElite: int = 4
    nbClose: int = 5
    nbIterPenaltyManagement: int = 100
    targetFeasible: float = 0.2
    penaltyDecrease: float = 0.85
    penaltyIncrease: float = 1.2
    seed: int = 0
    nbIter: int = 20000
    nbIterTraces: int = 500
    timeLimit: float = 0.0
    useSwapStar: bool = True

Others

A Julia wrapper is available: Hygese.jl

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts