
Security News
Opengrep Adds Apex Support and New Rule Controls in Latest Updates
The latest Opengrep releases add Apex scanning, precision rule tuning, and performance gains for open source static code analysis.
hyperparameter-tuning
Advanced tools
A minimal hyperparameter tuning framework to help you train hundreds of models.
It's essentially a set of helpful wrappers over optuna.
Consult the package documentation here!
Install package from PyPI:
pip install hyperparameter-tuning
from hpt.tuner import ObjectiveFunction, OptunaTuner
obj_func = ObjectiveFunction(
X_train, y_train, X_test, y_test,
hyperparameter_space=HYPERPARAM_SPACE_PATH, # path to YAML file
eval_metric="accuracy",
s_train=s_train,
s_val=s_test,
threshold=0.50,
)
tuner = OptunaTuner(
objective_function=obj_func,
direction="maximize", # NOTE: can pass other useful study kwargs here (e.g. storage)
)
# Then just run optimize as you would for an optuna.Study object
tuner.optimize(n_trials=20, n_jobs=4)
# Results are stored in tuner.results
tuner.results
# You can reconstruct the best predictor with:
clf = obj_func.reconstruct_model(obj_func.best_trial)
The hyperparameter space is provided either path to a YAML file, or as a dict
with the same structure.
Example hyperparameter spaces here.
The YAML file must follow this structure:
# One or more top-level algorithms
DT:
# Full classpath of algorithm's constructor
classpath: sklearn.tree.DecisionTreeClassifier
# One or more key-word arguments to be passed to the constructor
kwargs:
# Kwargs may be sampled from a distribution
max_depth:
type: int # either 'int' or 'float'
range: [ 10, 100 ] # minimum and maximum values
log: True # (optionally) whether to use logarithmic scale
# Kwargs may be sampled from a fixed set of categories
criterion:
- 'gini'
- 'entropy'
# Kwargs may be a pre-defined value
min_samples_split: 4
# You may explore multiple algorithms at once
LR:
classpath: sklearn.linear_model.LogisticRegression
kwargs:
# An example of a float hyperparameter
C:
type: float
range: [ 0.01, 1.0 ]
log: True
FAQs
A minimal framework for running hyperparameter tuning
We found that hyperparameter-tuning demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The latest Opengrep releases add Apex scanning, precision rule tuning, and performance gains for open source static code analysis.
Security News
npm now supports Trusted Publishing with OIDC, enabling secure package publishing directly from CI/CD workflows without relying on long-lived tokens.
Research
/Security News
A RubyGems malware campaign used 60 malicious packages posing as automation tools to steal credentials from social media and marketing tool users.