iaparc_inference

The IA Parc inference plugin allows developers to easily integrate their inference pipeline into IA Parc's production module.
Installation
pip install iaparc-inference
Usage
-
If your inference pipeline support batching:
from iaparc_inference import IAPListener
class MyModel:
def __init__(self, model_path: str):
def batch_query(batch: list, parameters: Optional) -> list:
''' execute your pipeline on a batch input
Note: "parameters" is an optional argument.
It can be used to handle URL's query parameters
It's a list of key(string)/value(string) dictionaries
'''
if __name__ == '__main__':
my_model = MyModel("path/to/my/model")
listener = IAPListener(my_model.batch_query)
listener.run()
-
If your inference pipeline do not support batching:
from iaparc_inference import IAPListener
class MyModel:
def __init__(self, model_path: str):
def single_query(one_input, parameters: Optional):
''' execute your pipeline on a single input
Note: "parameters" is an optional argument.
It can be used to handle URL's query parameters
It's a key(string)/value(string) dictionary
'''
if __name__ == '__main__':
my_model = MyModel("path/to/my/model")
listener = IAPListener(my_model.single_query, batch=1)
listener.run()
Features
- Dynamic batching
- Autoscalling
- Support both synchronous and asynchronous queries
- Data agnostic
License
This project is licensed under the Apache License Version 2.0 - see the Apache LICENSE file for details.