Research
Security News
Quasar RAT Disguised as an npm Package for Detecting Vulnerabilities in Ethereum Smart Contracts
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Fast Python Collaborative Filtering for Implicit Datasets.
This project provides fast Python implementations of several different popular recommendation algorithms for implicit feedback datasets:
Alternating Least Squares as described in the papers Collaborative Filtering for Implicit Feedback Datasets and Applications of the Conjugate Gradient Method for Implicit Feedback Collaborative Filtering.
Item-Item Nearest Neighbour models using Cosine, TFIDF or BM25 as a distance metric.
All models have multi-threaded training routines, using Cython and OpenMP to fit the models in parallel among all available CPU cores. In addition, the ALS and BPR models both have custom CUDA kernels - enabling fitting on compatible GPU's. Approximate nearest neighbours libraries such as Annoy, NMSLIB and Faiss can also be used by Implicit to speed up making recommendations.
Implicit can be installed from pypi with:
pip install implicit
Installing with pip will use prebuilt binary wheels on x86_64 Linux, Windows and OSX. These wheels include GPU support on Linux.
Implicit can also be installed with conda:
# CPU only package
conda install -c conda-forge implicit
# CPU+GPU package
conda install -c conda-forge implicit implicit-proc=*=gpu
import implicit
# initialize a model
model = implicit.als.AlternatingLeastSquares(factors=50)
# train the model on a sparse matrix of user/item/confidence weights
model.fit(user_item_data)
# recommend items for a user
recommendations = model.recommend(userid, user_item_data[userid])
# find related items
related = model.similar_items(itemid)
The examples folder has a program showing how to use this to compute similar artists on the last.fm dataset.
For more information see the documentation.
These blog posts describe the algorithms that power this library:
There are also several other articles about using Implicit to build recommendation systems:
This library requires SciPy version 0.16 or later and Python version 3.6 or later.
GPU Support requires at least version 11 of the NVidia CUDA Toolkit.
This library is tested with Python 3.7, 3.8, 3.9, 3.10 and 3.11 on Ubuntu, OSX and Windows.
Simple benchmarks comparing the ALS fitting time versus Spark can be found here.
I'd recommend configuring SciPy to use Intel's MKL matrix libraries. One easy way of doing this is by installing the Anaconda Python distribution.
For systems using OpenBLAS, I highly recommend setting 'export OPENBLAS_NUM_THREADS=1'. This disables its internal multithreading ability, which leads to substantial speedups for this package. Likewise for Intel MKL, setting 'export MKL_NUM_THREADS=1' should also be set.
Released under the MIT License
FAQs
Collaborative Filtering for Implicit Feedback Datasets
We found that implicit demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.