Intelligent AutoML Framework
An enterprise-grade automated machine learning framework with intelligent preprocessing and model selection capabilities.

Overview
The Intelligent AutoML Framework is a production-ready machine learning platform that automatically analyzes dataset characteristics and applies optimal preprocessing pipelines. Unlike traditional AutoML solutions, our framework employs intelligent analysis to select the most appropriate data transformations and feature engineering techniques for each unique dataset.
Key Capabilities
- Intelligent Data Analysis: Automated detection of data patterns, outliers, and optimal preprocessing strategies
- High Performance: Processes 140,000+ rows per second with efficient memory management
- Advanced Feature Engineering: Automatic feature expansion and transformation based on data characteristics
- Production Ready: Comprehensive logging, validation, and monitoring capabilities
- Zero Configuration: Minimal setup required with intelligent defaults
- Enterprise Grade: Scalable architecture suitable for large-scale deployments
Performance Metrics
| Processing Speed | 141,000 rows/second |
| Data Quality | 100% (zero missing values after processing) |
| Feature Expansion | 5-7x original feature count |
| Memory Efficiency | Optimized for large datasets |
Installation
Requirements
- Python 3.8 or higher
- Dependencies listed in
requirements.txt
Install from PyPI
pip install intelligent-automl
Install from Source
git clone https://github.com/your-org/intelligent-automl.git
cd intelligent-automl
pip install -e .
Quick Start
Basic Usage
from intelligent_automl import IntelligentAutoMLFramework
framework = IntelligentAutoMLFramework()
results = framework.run_complete_pipeline(
data_path='data.csv',
target_column='target'
)
processed_data = results['processed_data']
model = results['best_model']
Custom Pipeline Creation
from intelligent_automl import create_intelligent_pipeline
import pandas as pd
df = pd.read_csv('data.csv')
target_column = 'target'
pipeline = create_intelligent_pipeline(df, target_column)
X = df.drop(target_column, axis=1)
X_processed = pipeline.fit_transform(X)
print(f"Original features: {X.shape[1]}")
print(f"Processed features: {X_processed.shape[1]}")
print(f"Missing values: {X_processed.isnull().sum().sum()}")
Architecture
Core Components
Intelligence Engine
- Data characteristic analysis
- Preprocessing recommendation system
- Confidence-based decision making
- Performance optimization
Processing Pipeline
- Feature engineering modules
- Data cleaning and imputation
- Encoding and scaling transformations
- Outlier detection and handling
Model Management
- Automated model selection
- Hyperparameter optimization
- Cross-validation framework
- Performance evaluation
Configuration
Configuration Files
The framework supports YAML and JSON configuration files:
from intelligent_automl import IntelligentAutoMLFramework
from intelligent_automl.config import AutoMLConfig
config = AutoMLConfig.from_file('config.yaml')
framework = IntelligentAutoMLFramework(config=config)
results = framework.run_from_config()
Example Configuration
data:
file_path: "data/dataset.csv"
target_column: "target"
test_size: 0.2
preprocessing:
scaling_method: "robust"
encoding_strategy: "auto"
feature_selection: true
outlier_handling: "auto"
model:
algorithms: ["random_forest", "xgboost", "lightgbm"]
cross_validation: 5
optimization_metric: "accuracy"
output:
save_processed_data: true
save_model: true
generate_report: true
API Reference
IntelligentAutoMLFramework
Main class for running complete AutoML pipelines.
Methods
run_complete_pipeline(data_path, target_column, **kwargs): Execute full AutoML workflow
run_from_config(config): Run pipeline using configuration object
analyze_data(data_path): Perform comprehensive data analysis
create_pipeline(df, target_column): Generate intelligent preprocessing pipeline
create_intelligent_pipeline(df, target_column, **options)
Factory function for creating custom preprocessing pipelines.
Parameters:
df (pandas.DataFrame): Input dataset
target_column (str): Name of target variable
options (dict): Additional configuration options
Returns:
- sklearn.pipeline.Pipeline: Configured preprocessing pipeline
Examples
Complete Workflow Example
import pandas as pd
from intelligent_automl import IntelligentAutoMLFramework
framework = IntelligentAutoMLFramework(
verbose=True,
log_level='INFO'
)
results = framework.run_complete_pipeline(
data_path='examples/data/ecommerce.csv',
target_column='purchase_amount',
output_directory='results/'
)
print(f"Best Model: {results['best_model_name']}")
print(f"Cross-validation Score: {results['cv_score']:.4f}")
print(f"Feature Count: {results['feature_count']}")
Advanced Pipeline Customization
from intelligent_automl.core import (
IntelligentPipelineSelector,
FeatureEngineering,
DataQualityValidator
)
selector = IntelligentPipelineSelector()
analysis = selector.analyze_data(df)
recommendations = selector.generate_recommendations(analysis)
pipeline = selector.create_pipeline(recommendations)
validator = DataQualityValidator()
quality_report = validator.validate(df)
Testing
Running Tests
pytest tests/
pytest --cov=intelligent_automl tests/
pytest tests/unit/
pytest tests/integration/
Performance Benchmarks
python benchmarks/performance_benchmark.py
python benchmarks/memory_benchmark.py
Documentation
Comprehensive documentation is available in the docs/ directory:
Contributing
We welcome contributions to the Intelligent AutoML Framework. Please review our contributing guidelines:
- Fork the repository
- Create a feature branch (
git checkout -b feature/your-feature)
- Make your changes with appropriate tests
- Ensure all tests pass (
pytest)
- Submit a pull request with clear description
Development Setup
git clone https://github.com/your-org/intelligent-automl.git
cd intelligent-automl
pip install -e ".[dev]"
pre-commit install
Code Standards
- Follow PEP 8 style guidelines
- Include comprehensive docstrings
- Maintain test coverage above 90%
- Use type hints where appropriate
Changelog
See CHANGELOG.md for version history and release notes.
License
This project is licensed under the MIT License. See LICENSE file for details.
Support
Getting Help
Enterprise Support
For enterprise support, custom implementations, or consulting services, please contact our team.
Citation
If you use this framework in your research, please cite:
@software{intelligent_automl_framework,
title = {Intelligent AutoML Framework},
author = {Your Organization},
year = {2024},
url = {https://github.com/your-org/intelligent-automl}
}
Intelligent AutoML Framework - Empowering data scientists with intelligent automation.