🚨 Shai-Hulud Strikes Again:834 Packages Compromised.Technical Analysis →
Socket
Book a DemoInstallSign in
Socket

intelligent-automl

Package Overview
Dependencies
Maintainers
1
Versions
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

intelligent-automl

Intelligent AutoML Framework with comprehensive multi-metric evaluation and AI-driven optimization

pipPyPI
Version
1.1.1
Maintainers
1

Intelligent AutoML Framework

An enterprise-grade automated machine learning framework with intelligent preprocessing and model selection capabilities.

Python 3.8+ License: MIT Build Status Documentation

Overview

The Intelligent AutoML Framework is a production-ready machine learning platform that automatically analyzes dataset characteristics and applies optimal preprocessing pipelines. Unlike traditional AutoML solutions, our framework employs intelligent analysis to select the most appropriate data transformations and feature engineering techniques for each unique dataset.

Key Capabilities

  • Intelligent Data Analysis: Automated detection of data patterns, outliers, and optimal preprocessing strategies
  • High Performance: Processes 140,000+ rows per second with efficient memory management
  • Advanced Feature Engineering: Automatic feature expansion and transformation based on data characteristics
  • Production Ready: Comprehensive logging, validation, and monitoring capabilities
  • Zero Configuration: Minimal setup required with intelligent defaults
  • Enterprise Grade: Scalable architecture suitable for large-scale deployments

Performance Metrics

MetricValue
Processing Speed141,000 rows/second
Data Quality100% (zero missing values after processing)
Feature Expansion5-7x original feature count
Memory EfficiencyOptimized for large datasets

Installation

Requirements

  • Python 3.8 or higher
  • Dependencies listed in requirements.txt

Install from PyPI

pip install intelligent-automl

Install from Source

git clone https://github.com/your-org/intelligent-automl.git
cd intelligent-automl
pip install -e .

Quick Start

Basic Usage

from intelligent_automl import IntelligentAutoMLFramework

# Initialize framework
framework = IntelligentAutoMLFramework()

# Run complete pipeline
results = framework.run_complete_pipeline(
    data_path='data.csv',
    target_column='target'
)

# Access processed data and trained model
processed_data = results['processed_data']
model = results['best_model']

Custom Pipeline Creation

from intelligent_automl import create_intelligent_pipeline
import pandas as pd

# Load data
df = pd.read_csv('data.csv')
target_column = 'target'

# Create and fit pipeline
pipeline = create_intelligent_pipeline(df, target_column)
X = df.drop(target_column, axis=1)
X_processed = pipeline.fit_transform(X)

print(f"Original features: {X.shape[1]}")
print(f"Processed features: {X_processed.shape[1]}")
print(f"Missing values: {X_processed.isnull().sum().sum()}")

Architecture

Core Components

Intelligence Engine

  • Data characteristic analysis
  • Preprocessing recommendation system
  • Confidence-based decision making
  • Performance optimization

Processing Pipeline

  • Feature engineering modules
  • Data cleaning and imputation
  • Encoding and scaling transformations
  • Outlier detection and handling

Model Management

  • Automated model selection
  • Hyperparameter optimization
  • Cross-validation framework
  • Performance evaluation

Configuration

Configuration Files

The framework supports YAML and JSON configuration files:

from intelligent_automl import IntelligentAutoMLFramework
from intelligent_automl.config import AutoMLConfig

# Load from configuration file
config = AutoMLConfig.from_file('config.yaml')
framework = IntelligentAutoMLFramework(config=config)

# Run with custom configuration
results = framework.run_from_config()

Example Configuration

data:
  file_path: "data/dataset.csv"
  target_column: "target"
  test_size: 0.2

preprocessing:
  scaling_method: "robust"
  encoding_strategy: "auto"
  feature_selection: true
  outlier_handling: "auto"

model:
  algorithms: ["random_forest", "xgboost", "lightgbm"]
  cross_validation: 5
  optimization_metric: "accuracy"

output:
  save_processed_data: true
  save_model: true
  generate_report: true

API Reference

IntelligentAutoMLFramework

Main class for running complete AutoML pipelines.

Methods

  • run_complete_pipeline(data_path, target_column, **kwargs): Execute full AutoML workflow
  • run_from_config(config): Run pipeline using configuration object
  • analyze_data(data_path): Perform comprehensive data analysis
  • create_pipeline(df, target_column): Generate intelligent preprocessing pipeline

create_intelligent_pipeline(df, target_column, **options)

Factory function for creating custom preprocessing pipelines.

Parameters:

  • df (pandas.DataFrame): Input dataset
  • target_column (str): Name of target variable
  • options (dict): Additional configuration options

Returns:

  • sklearn.pipeline.Pipeline: Configured preprocessing pipeline

Examples

Complete Workflow Example

import pandas as pd
from intelligent_automl import IntelligentAutoMLFramework

# Initialize framework with logging
framework = IntelligentAutoMLFramework(
    verbose=True,
    log_level='INFO'
)

# Run complete analysis and training
results = framework.run_complete_pipeline(
    data_path='examples/data/ecommerce.csv',
    target_column='purchase_amount',
    output_directory='results/'
)

# Access results
print(f"Best Model: {results['best_model_name']}")
print(f"Cross-validation Score: {results['cv_score']:.4f}")
print(f"Feature Count: {results['feature_count']}")

Advanced Pipeline Customization

from intelligent_automl.core import (
    IntelligentPipelineSelector,
    FeatureEngineering,
    DataQualityValidator
)

# Analyze data characteristics
selector = IntelligentPipelineSelector()
analysis = selector.analyze_data(df)

# Generate recommendations
recommendations = selector.generate_recommendations(analysis)

# Create custom pipeline based on recommendations
pipeline = selector.create_pipeline(recommendations)

# Validate data quality
validator = DataQualityValidator()
quality_report = validator.validate(df)

Testing

Running Tests

# Run all tests
pytest tests/

# Run with coverage
pytest --cov=intelligent_automl tests/

# Run specific test categories
pytest tests/unit/
pytest tests/integration/

Performance Benchmarks

# Run performance benchmarks
python benchmarks/performance_benchmark.py

# Memory profiling
python benchmarks/memory_benchmark.py

Documentation

Comprehensive documentation is available in the docs/ directory:

Contributing

We welcome contributions to the Intelligent AutoML Framework. Please review our contributing guidelines:

  • Fork the repository
  • Create a feature branch (git checkout -b feature/your-feature)
  • Make your changes with appropriate tests
  • Ensure all tests pass (pytest)
  • Submit a pull request with clear description

Development Setup

git clone https://github.com/your-org/intelligent-automl.git
cd intelligent-automl
pip install -e ".[dev]"
pre-commit install

Code Standards

  • Follow PEP 8 style guidelines
  • Include comprehensive docstrings
  • Maintain test coverage above 90%
  • Use type hints where appropriate

Changelog

See CHANGELOG.md for version history and release notes.

License

This project is licensed under the MIT License. See LICENSE file for details.

Support

Getting Help

Enterprise Support

For enterprise support, custom implementations, or consulting services, please contact our team.

Citation

If you use this framework in your research, please cite:

@software{intelligent_automl_framework,
  title = {Intelligent AutoML Framework},
  author = {Your Organization},
  year = {2024},
  url = {https://github.com/your-org/intelligent-automl}
}

Intelligent AutoML Framework - Empowering data scientists with intelligent automation.

Keywords

automl

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts