Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

intrinio

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

intrinio

Intrinio API client

  • 0.2.1
  • PyPI
  • Socket score

Maintainers
1

intrinio

|Build Status|

Unofficial Intrinio API client for Python. It gives easy access to financial data.

Setup

Install this package by using the pip tool:

.. code:: bash

pip install intrinio

Before retrieving data using the package the API username and password has to be configured, either by setting the username and password attributes of the intrinio package:

.. code:: python

import intrinio
intrinio.client.username = 'USERNAME_FROM_INTRINIO'
intrinio.client.password = 'PASSWORD_FROM_INTRINIO'

Or by setting the system environment variables:

  • INTRINIO_USERNAME
  • INTRINIO_PASSWORD

Quick start

Install the intrinio package, import it and set username and password as above first.

Get prices starting at 2016-01-01 for Apple:

.. code:: python

intrinio.prices('AAPL', start_date='2016-01-01')

Get yearly fundamentals including PE ratio, net debt, total capital and over 100 other variables for Apple:

.. code:: python

intrinio.financials('AAPL')

Get company information about Google:

.. code:: python

intrinio.companies('GOOG')

Get company information about Google using the low level get function:

.. code:: python

intrinio.get('companies', identifier='GOOG')

Get cik, lei, name and ticker of companies with "Bank" in their company name:

.. code:: python

intrinio.companies(query='Bank')

Screen stocks with PE higher than 10:

.. code:: python

intrinio.screener('pricetoearnings~gt~10')

Usage

There are a high- and low level functions used to access the Intrinio API.

The high level functions are mostly simple wrappers of the get function that retrieves all data with optional parameters to filter the data. They might also do some data conversion like for example the prices endpoint where the date column is used as the index for the Pandas DataFrame.

For more information about available endpoints and their parameters, see Intrinio API documentation at: Intrinio Docs <http://docs.intrinio.com/>__

Low level functions


-  get(endpoint, \*\*parameters):

   Get complete dataset from an endpoint using optional query
   parameters.

   Args:

   ::

       endpoint: Intrinio endpoint, for example: companies
       parameters: Optional query parameters

   Returns: Dataset as a Pandas DataFrame

-  get\_page(endpoint, page\_number=1, page\_size=None, \*\*parameters):

   Get a dataset page from an endpoint using optional query parameters.

   Args:

   ::

       endpoint: Intrinio endpoint, for example: companies
       page_number: Optional page number where 1 is first page (default 1)
       page_size: Optional page size (default max page size for the endpoint)
       parameters: Optional query parameters

   Returns: Dataset page as a Pandas DataFrame with an additional
   total\_pages attribute

High level functions
  • companies(identifier=None, query=None):

    Get companies with optional filtering using parameters.

    Args:

    ::

    identifier: Identifier for the legal entity or a security associated
        with the company: TICKER SYMBOL | FIGI | OTHER IDENTIFIER
    query: Search of company name or ticker symbol
    

    Returns: Dataset as a Pandas DataFrame

  • securities(identifier=None, query=None, exch_symbol=None):

    Get securities with optional filtering using parameters.

    Args:

    ::

    identifier: Identifier for the legal entity or a security associated
        with the company: TICKER SYMBOL | FIGI | OTHER IDENTIFIER
    query: Search of security name or ticker symbol
    exch_symbol: Exchange symbol
    

    Returns: Dataset as a Pandas DataFrame

  • indices(identifier=None, query=None, type=None):

    Get indices with optional filtering using parameters.

    Args:

    ::

    identifier: Intrinio symbol associated with the index
    query: Search of index name or symbol
    type: Type of indices: stock_market | economic | sic
    

    Returns: Dataset as a Pandas DataFrame

  • prices(identifier, start_date=None, end_date=None, frequency='daily', sort_order='desc'):

    Get historical stock market prices or indices.

    Args:

    ::

    identifier: Stock market symbol or index
    start_date: Start date of prices (default no filter)
    end_date: Last date (default today)
    frequency: Frequency of prices: daily (default) | weekly | monthly |
        quarterly | yearly
    sort_order: Order of prices: asc | desc (default)
    

    Returns: Dataset as a Pandas DataFrame

  • news(identifier):

    Get news for a company.

    Args:

    ::

    identifier: stock market ticker symbol associated with the company's
        common stock. If the company is foreign, use the stock exchange
        code, followed by a colon, then the ticker.
    

    Returns: Dataset as a Pandas DataFrame

  • financials(identifier, type='FY', statement='calculations'):

    Get standardized fundamental data for a company.

    Args:

    ::

    identifier: stock market ticker symbol associated with the company's
        common stock. If the company is foreign, use the stock exchange
        code, followed by a colon, then the ticker.
    type: Period type: FY (default) | QTR | TTM | YTD
    statement: Type of fundamental data: calculations (default) |
        income_statement | balance_sheet | cash_flow_statement
    

    Returns: Dataset as a Pandas DataFrame

  • financials_period(identifier, fiscal_year, fiscal_period='FY', statement='calculations'):

    Get standardized fundamental data for a single period for a company.

    Args:

    ::

    fiscal_year: Year
    fiscal_period: FY (default) | Q1 | Q2 | Q3 | Q4 | Q1TTM | Q2TTM | Q3TTM
        | Q2YTD | Q3YTD
    identifier: stock market ticker symbol associated with the company's
        common stock. If the company is foreign, use the stock exchange
        code, followed by a colon, then the ticker.
    statement: Type of fundamental data: calculations (default) |
        income_statement | balance_sheet | cash_flow_statement
    

    Returns: Dataset as a Pandas DataFrame

  • fundamentals(identifier, type='FY', statement='calculations'):

    Get available periods with standardized fundamental data for a company.

    Args:

    ::

    identifier: stock market ticker symbol associated with the company's
        common stock. If the company is foreign, use the stock exchange
        code, followed by a colon, then the ticker.
    type: Period type: FY (default) | QTR | TTM | YTD
    statement: Type of fundamental data: calculations (default) |
        income_statement | balance_sheet | cash_flow_statement
    

    Returns: Dataset as a Pandas DataFrame

  • screener(conditions, order_column=None, order_direction=None, primary_only=None, logic=None):

    Find securities that meet a list of conditions.

    Args:

    ::

    conditions: Comma-separated list of conditions. Each condition
        consists of three or four elements separated by tildes (~):
        Data_tag~Operator~Value~Label(Optional)
    order_column: A data tag by which to order the results
    order_direction: Order of the results: asc (default) | desc
    primary_only: Return only primary securities (excluding special
        securities such as preferred shares)
    logic: How the conditions are applied using AND by default
    

    Returns: List of tickers that meet the conditions as a Pandas DataFrame

Tests

The tests will cache API requests in ~/.cache/intrinio to make the tests go faster and avoid excessive API traffic. It is not recommended to use caching for non-testing purposes, it should only be used for tests.

Run the tests using pytest in the root directory of the project:

.. code:: bash

py.test

Or run the runtests script to also generate a coverage report (saved to tmp/).

.. code:: bash

bin/runtests

Version history

  • See CHANGELOG.md

License

  • MIT License

.. |Build Status| image:: https://travis-ci.org/nhedlund/intrinio.svg?branch=master :target: https://travis-ci.org/nhedlund/intrinio

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc