
Security News
NVD Quietly Sweeps 100K+ CVEs Into a “Deferred” Black Hole
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
irspack is a Python package for recommender systems based on implicit feedback, designed to be used by practitioners.
Some of its features include:
In most cases, you can install the pre-build binaries via
pip install irspack
The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like
CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git
In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!
I have also prepared a wrapper class (BPRFMRecommender
) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm
separately, e.g. by
pip install lightfm
If you want to use Mult-VAE, you'll need the following additional (pip-installable) packages:
To begin with, we represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into recommender classes:
import numpy as np
import scipy.sparse as sps
from irspack import IALSRecommender, df_to_sparse
from irspack.dataset import MovieLens100KDataManager
df = MovieLens100KDataManager().read_interaction()
# Convert pandas.Dataframe into scipy's sparse matrix.
# The i'th row of `X_interaction` corresponds to `unique_user_id[i]`
# and j'th column of `X_interaction` corresponds to `unique_movie_id[j]`.
X_interaction, unique_user_id, unique_movie_id = df_to_sparse(
df, 'userId', 'movieId'
)
recommender = IALSRecommender(X_interaction)
recommender.learn()
# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])
To evaluate the performance of a recommenderm we have to split the dataset to train and validation sets:
from irspack.split import rowwise_train_test_split
from irspack.evaluation import Evaluator
# Random split
X_train, X_val = rowwise_train_test_split(
X_interaction, test_ratio=0.2, random_state=0
)
evaluator = Evaluator(ground_truth=X_val)
recommender = IALSRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)
This will print something like
{
'appeared_item': 435.0,
'entropy': 5.160409123151053,
'gini_index': 0.9198367595008214,
'hit': 0.40084835630965004,
'map': 0.013890322881619916,
'n_items': 1682.0,
'ndcg': 0.07867240014767263,
'precision': 0.06797454931071051,
'recall': 0.03327028758587522,
'total_user': 943.0,
'valid_user': 943.0
}
Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimization.
best_params, trial_dfs = IALSRecommender.tune(X_train, evaluator, n_trials=20)
# maximal ndcg around 0.43 ~ 0.45
trial_dfs["ndcg@10"].max()
Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set.
See examples/
for more complete examples.
FAQs
Implicit feedback-based recommender systems, packed for practitioners.
We found that irspack demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
Research
Security News
Lazarus-linked threat actors expand their npm malware campaign with new RAT loaders, hex obfuscation, and over 5,600 downloads across 11 packages.
Security News
Safari 18.4 adds support for Iterator Helpers and two other TC39 JavaScript features, bringing full cross-browser coverage to key parts of the ECMAScript spec.