New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

jetblack-serialization

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

jetblack-serialization

Serialization for JSON and XML using typing

  • 3.1.1
  • PyPI
  • Socket score

Maintainers
1

jetblack-serialization

Serialization for JSON and XML in Python using typing annotations (read the docs).

Status

It has been tested with Python 3.7 used the typing_extensions package for TypedDict and Annotated. In Python 3.8 the TypedDict class is available in the standard typing package.

Installation

The package can be installed with pip.

pip install jetblack-serialization

Overview

The package adds support for type annotations when serializing or deserializing JSON or XML.

JSON

Given a typed dictionary:

from datetime import datetime
from typing import List, Optional, TypedDict, Union

class Book(TypedDict, total=False):
    book_id: int
    title: str
    author: str
    publication_date: datetime
    keywords: List[str]
    phrases: List[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]
Serializing

This could be serialized to JSON as:

from stringcase import camelcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.json import serialize

obj: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
}
text = serialize(
    obj,
    Book,
    SerializerConfig(camelcase, snakecase, pretty_print=True)
)
print(text)

giving:

{
    "bookId": 42,
    "title": "Little Red Book",
    "author": "Chairman Mao",
    "publicationDate": "1973-01-01T21:52:13.00Z",
    "keywords": ["Revolution", "Communism"],
    "phrases": ["Revolutionary wars are inevitable in class society", "War is the continuation of politics"],
    "age": 24,
    "pages": null
}

Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.

Deserializing

We can deserialize the data as follows:

from stringcase import camelcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.json import deserialize

dct = deserialize(
    text,
    Annotated[Book, JSONValue()],
    SerializerConfig(camelcase, snakecase)
)

XML

The XML version of the typed dictionary might look like this:

from datetime import datetime
from typing import List, Optional, TypedDict, Union
from typing_extensions import Annotated
from jetblack_serialization.xml import XMLEntity, XMLAttribute

class Book(TypedDict, total=False):
    book_id: Annotated[int, XMLAttribute("bookId")]
    title: str
    author: str
    publication_date: datetime
    keywords: Annotated[List[Annotated[str, XMLEntity("Keyword")]], XMLEntity("Keywords")]
    phrases: List[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Note we have introduced some annotations to control the serialization. For XML we have used pascal-case to serialized the keys and snake-case for deserialization.

Serializing

To serialize we need to provide the containing tag Book:

from stringcase import pascalcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.xml import serialize

book: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
    'pages': None
}
text = serialize(
    book,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(pascalcase, snakecase)
)
print(text)

Producing:

<Book bookId="42">
    <Title>Little Red Book</Title>
    <Author>Chairman Mao</Author>
    <PublicationDate>1973-01-01T21:52:13.00Z</PublicationDate>
    <Keywords>
        <Keyword>Revolution</Keyword>
        <Keyword>Communism</Keyword>
    </Keywords>
    <Phrase>Revolutionary wars are inevitable in class society</Phrase>
    <Phrase>War is the continuation of politics</Phrase>
    <Age>24</Age>
</Book>'

The annotations are more elaborate here. However, much of the typed dictionary requires no annotation.

First we needed the outer document wrapper XMLEntity("Book").

Next we annotated the book_id to be an XMLAttribute.

Finally we annotated the two lists differently. The keywords list used a nested structure, which we indicated by giving the list a different XMLEntity tag to the list items. For the phrases we used the default in-line behaviour.

Deserializing

We can deserialize the XML as follows:

from stringcase import pascalcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.xml import deserialize

dct = deserialize(
    text,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(pascalcase, snakecase)
)

Attributes

For JSON, attributes are typically not required. However JSONProperty(tag: str) and JSONValue() are provided for completeness.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc