Socket
Book a DemoInstallSign in
Socket

jetblack-serialization

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

jetblack-serialization

Serialization for JSON and XML using typing

4.0.5
pipPyPI
Maintainers
1

jetblack-serialization

Serialization for JSON, YAML and XML in Python using type annotations (read the docs).

Installation

This is a Python 3.12+ package.

The package can be installed with pip.

pip install jetblack-serialization

By default, the dependencies for YAML and XML are not installed.

To install the dependencies for XML (lxml).

pip install jetblack-serialization[xml]

To install the dependencies for YAML (PyYAML).

pip install jetblack-serialization[yaml]

To install the dependencies for all.

pip install jetblack-serialization[xml,yaml]

Overview

The package adds support for type annotations when serializing or deserializing JSON, YAML or XML.

JSON

Given a typed dictionary:

from datetime import datetime
from typing import Optional, TypedDict, Union

class Book(TypedDict, total=False):
    book_id: int
    title: str
    author: str
    publication_date: datetime
    keywords: list[str]
    phrases: list[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Serializing JSON

This could be serialized to JSON as:

from stringcase import camelcase
from jetblack_serialization.json import serialize, SerializerConfig

obj: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
}
text = serialize(
    obj,
    Book,
    SerializerConfig(key_serializer=camelcase, pretty_print=True)
)
print(text)

giving:

{
    "bookId": 42,
    "title": "Little Red Book",
    "author": "Chairman Mao",
    "publicationDate": "1973-01-01T21:52:13.00Z",
    "keywords": ["Revolution", "Communism"],
    "phrases": ["Revolutionary wars are inevitable in class society", "War is the continuation of politics"],
    "age": 24,
    "pages": null
}

Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.

Deserializing JSON

We can deserialize the data as follows:

from stringcase import snakecase
from jetblack_serialization.json import deserialize, SerializerConfig

dct = deserialize(
    text,
    Annotated[Book, JSONValue()],
    SerializerConfig(key_deserializer=snakecase)
)

YAML

YAML is a superset of JSON, so for serialization things are very similar.

Given a typed dictionary:

from datetime import datetime
from typing import Optional, TypedDict, Union

class Book(TypedDict, total=False):
    book_id: int
    title: str
    author: str
    publication_date: datetime
    keywords: list[str]
    phrases: list[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Serializing YAML

This could be serialized to YAML as:

from stringcase import camelcase
from jetblack_serialization.yaml import serialize, SerializerConfig

obj: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
}
text = serialize(
    obj,
    Book,
    SerializerConfig(key_serializer=camelcase, pretty_print=True)
)
print(text)

giving:

bookId: 42
title: Little Red Book
author: Chairman Mao
publicationDate: '1973-01-01T21:52:13.00Z'
keywords:
- Revolution
- Communism
phrases:
- Revolutionary wars are inevitable in class society
- War is the continuation of politics
age: 24
pages: null

Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.

Deserializing YAML

We can deserialize the data as follows:

from stringcase import snakecase
from jetblack_serialization.yaml import deserialize, SerializerConfig

dct = deserialize(
    text,
    Annotated[Book, JSONValue()],
    SerializerConfig(key_deserializer=snakecase)
)

XML

The XML version of the typed dictionary might look like this:

from datetime import datetime
from typing import Optional, TypedDict, Union
from typing_extensions import Annotated
from jetblack_serialization.xml import XMLEntity, XMLAttribute

class Book(TypedDict, total=False):
    book_id: Annotated[int, XMLAttribute("bookId")]
    title: str
    author: str
    publication_date: datetime
    keywords: Annotated[list[Annotated[str, XMLEntity("Keyword")]], XMLEntity("Keywords")]
    phrases: list[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Note we have introduced some annotations to control the serialization. For XML we have used pascal-case to serialized the keys and snake-case for deserialization.

Serializing XML

To serialize we need to provide the containing tag Book:

from stringcase import pascalcase
from jetblack_serialization.xml import serialize, SerializerConfig

book: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
    'pages': None
}
text = serialize(
    book,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(key_serializer=pascalcase)
)
print(text)

Producing:

<Book bookId="42">
    <Title>Little Red Book</Title>
    <Author>Chairman Mao</Author>
    <PublicationDate>1973-01-01T21:52:13.00Z</PublicationDate>
    <Keywords>
        <Keyword>Revolution</Keyword>
        <Keyword>Communism</Keyword>
    </Keywords>
    <Phrase>Revolutionary wars are inevitable in class society</Phrase>
    <Phrase>War is the continuation of politics</Phrase>
    <Age>24</Age>
</Book>'

The annotations are more elaborate here. However, much of the typed dictionary requires no annotation.

First we needed the outer document wrapper XMLEntity("Book").

Next we annotated the book_id to be an XMLAttribute.

Finally we annotated the two lists differently. The keywords list used a nested structure, which we indicated by giving the list a different XMLEntity tag to the list items. For the phrases we used the default in-line behaviour.

Deserializing XML

We can deserialize the XML as follows:

from stringcase import snakecase
from jetblack_serialization.xml import deserialize, SerializerConfig

dct = deserialize(
    text,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(key_deserializer=snakecase)
)

Attributes

For JSON, attributes are typically not required. However JSONProperty(tag: str) and JSONValue() are provided for completeness.

Contributing

To run the tests with tox and pyenv:

VIRTUALENV_DISCOVERY=pyenv tox

Keywords

serialization

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.