Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Interoperates dataclasses and TypedDict annotations with json objects for python
Documentation: https://dutradda.github.io/jsondaora
Source Code: https://github.com/dutradda/jsondaora
* feature in development.
$ pip install jsondaora
from typing import List, TypedDict
from jsondaora import (
as_typed_dict,
asdataclass,
dataclass_asjson,
jsondaora,
typed_dict_asjson,
)
@jsondaora
class Person:
name: str
age: int
class Music:
name: str
musics: List[Music]
jsondict = dict(name=b'John', age='40', musics=[dict(name='Imagine')])
person = asdataclass(jsondict, Person)
print('dataclass:')
print(person)
print(dataclass_asjson(person))
print()
# TypedDict
@jsondaora
class MusicT(TypedDict):
name: str
@jsondaora
class PersonT(TypedDict):
name: str
age: int
musics: List[MusicT]
jsondict = dict(name=b'John', age='40', musics=[dict(name='Imagine')])
person = as_typed_dict(jsondict, PersonT)
print('TypedDict:')
print(person)
print(typed_dict_asjson(person, Person))
dataclass:
Person(name='John', age=40, musics=[Person.Music(name='Imagine')])
b'{"name":"John","age":40,"musics":[{"name":"Imagine"}]}'
TypedDict:
{'name': 'John', 'age': 40, 'musics': [{'name': 'Imagine'}]}
b'{"name":"John","age":40,"musics":[{"name":"Imagine"}]}'
from typing import List, TypedDict
from jsondaora import (
as_typed_dict,
asdataclass,
dataclass_asjson,
jsondaora,
typed_dict_asjson,
)
@jsondaora(deserialize_fields=('name'))
class Person:
name: str
age: int
class Music:
name: str
musics: List[Music]
jsondict = dict(name=b'John', age='40', musics=[dict(name='Imagine')])
person = asdataclass(jsondict, Person)
print('dataclass:')
print(person)
print(dataclass_asjson(person))
print()
# TypedDict
@jsondaora
class MusicT(TypedDict):
name: str
@jsondaora(deserialize_fields=('name',))
class PersonT(TypedDict):
name: str
age: int
musics: List[MusicT]
jsondict = dict(name=b'John', age='40', musics=[dict(name='Imagine')])
person = as_typed_dict(jsondict, PersonT)
print('TypedDict:')
print(person)
print(typed_dict_asjson(person, PersonT))
dataclass:
Person(name='John', age='40', musics=[{'name': 'Imagine'}])
b'{"name":"John","age":"40","musics":[{"name":"Imagine"}]}'
TypedDict:
{'name': 'John', 'musics': [{'name': 'Imagine'}], 'age': '40'}
b'{"name":"John","musics":[{"name":"Imagine"}],"age":"40"}'
from typing import List, TypedDict
from jsondaora import (
as_typed_dict,
asdataclass,
dataclass_asjson,
jsondaora,
typed_dict_asjson,
)
@jsondaora(serialize_fields=('name', 'age'))
class Person:
name: str
age: int
class Music:
name: str
musics: List[Music]
jsondict = dict(name='John', age=40, musics=[dict(name='Imagine')])
person = asdataclass(jsondict, Person)
print('dataclass:')
print(person)
print(dataclass_asjson(person))
print()
# TypedDict
@jsondaora
class Music(TypedDict):
name: str
@jsondaora(serialize_fields=('age',))
class PersonT(TypedDict):
name: str
age: int
musics: List[Music]
jsondict = dict(name=b'John', age='40', musics=[dict(name='Imagine')])
person = as_typed_dict(jsondict, PersonT)
print('TypedDict:')
print(person)
print(typed_dict_asjson(person, PersonT))
dataclass:
Person(name='John', age=40, musics=[Person.Music(name='Imagine')])
b'{"age":40,"name":"John"}'
TypedDict:
{'name': 'John', 'age': 40, 'musics': [{'name': 'Imagine'}]}
b'{"age":40}'
FAQs
Interoperates @dataclass with json objects
We found that jsondaora demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.