Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
pip install langchain-core
LangChain Core contains the base abstractions that power the rest of the LangChain ecosystem.
These abstractions are designed to be as modular and simple as possible. Examples of these abstractions include those for language models, document loaders, embedding models, vectorstores, retrievers, and more.
The benefit of having these abstractions is that any provider can implement the required interface and then easily be used in the rest of the LangChain ecosystem.
For full documentation see the API reference.
The concept of a Runnable is central to LangChain Core – it is the interface that most LangChain Core components implement, giving them
For more check out the runnable docs. Examples of components that implement the interface include: LLMs, Chat Models, Prompts, Retrievers, Tools, Output Parsers.
You can use LangChain Core objects in two ways:
imperative, ie. call them directly, eg. model.invoke(...)
declarative, with LangChain Expression Language (LCEL)
or a mix of both! eg. one of the steps in your LCEL sequence can be a custom function
Feature | Imperative | Declarative |
---|---|---|
Syntax | All of Python | LCEL |
Tracing | ✅ – Automatic | ✅ – Automatic |
Parallel | ✅ – with threads or coroutines | ✅ – Automatic |
Streaming | ✅ – by yielding | ✅ – Automatic |
Async | ✅ – by writing async functions | ✅ – Automatic |
LangChain Expression Language (LCEL) is a declarative language for composing LangChain Core runnables into sequences (or DAGs), covering the most common patterns when building with LLMs.
LangChain Core compiles LCEL sequences to an optimized execution plan, with automatic parallelization, streaming, tracing, and async support.
For more check out the LCEL docs.
For more advanced use cases, also check out LangGraph, which is a graph-based runner for cyclic and recursive LLM workflows.
langchain-core
is currently on version 0.1.x
.
As langchain-core
contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in langchain_core.beta
. The reason for langchain_core.beta
is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so.
Minor version increases will occur for:
langchain_core.beta
Patch version increases will occur for:
langchain_core.beta
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see the Contributing Guide.
The whole LangChain ecosystem is built on top of LangChain Core, so you're in good company when building on top of it. Some of the benefits:
FAQs
Building applications with LLMs through composability
We found that langchain-core demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 4 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.