LangChain MCP Adapters
This library provides a lightweight wrapper that makes Anthropic Model Context Protocol (MCP) tools compatible with LangChain and LangGraph.

Features
- 🛠️ Convert MCP tools into LangChain tools that can be used with LangGraph agents
- 📦 A client implementation that allows you to connect to multiple MCP servers and load tools from them
Installation
pip install langchain-mcp-adapters
Quickstart
Here is a simple example of using the MCP tools with a LangGraph agent.
pip install langchain-mcp-adapters langgraph "langchain[openai]"
export OPENAI_API_KEY=<your_api_key>
Server
First, let's create an MCP server that can add and multiply numbers.
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("Math")
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers"""
return a + b
@mcp.tool()
def multiply(a: int, b: int) -> int:
"""Multiply two numbers"""
return a * b
if __name__ == "__main__":
mcp.run(transport="stdio")
Client
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from langchain_mcp_adapters.tools import load_mcp_tools
from langgraph.prebuilt import create_react_agent
server_params = StdioServerParameters(
command="python",
args=["/path/to/math_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
tools = await load_mcp_tools(session)
agent = create_react_agent("openai:gpt-4.1", tools)
agent_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})
Multiple MCP Servers
The library also allows you to connect to multiple MCP servers and load tools from them:
Server
...
from typing import List
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("Weather")
@mcp.tool()
async def get_weather(location: str) -> str:
"""Get weather for location."""
return "It's always sunny in New York"
if __name__ == "__main__":
mcp.run(transport="streamable-http")
python weather_server.py
Client
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
client = MultiServerMCPClient(
{
"math": {
"command": "python",
"args": ["/path/to/math_server.py"],
"transport": "stdio",
},
"weather": {
"url": "http://localhost:8000/mcp",
"transport": "streamable_http",
}
}
)
tools = await client.get_tools()
agent = create_react_agent("openai:gpt-4.1", tools)
math_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})
weather_response = await agent.ainvoke({"messages": "what is the weather in nyc?"})
[!note]
Example above will start a new MCP ClientSession
for each tool invocation. If you would like to explicitly start a session for a given server, you can do:
from langchain_mcp_adapters.tools import load_mcp_tools
client = MultiServerMCPClient({...})
async with client.session("math") as session:
tools = await load_mcp_tools(session)
Streamable HTTP
MCP now supports streamable HTTP transport.
To start an example streamable HTTP server, run the following:
cd examples/servers/streamable-http-stateless/
uv run mcp-simple-streamablehttp-stateless --port 3000
Alternatively, you can use FastMCP directly (as in the examples above).
To use it with Python MCP SDK streamablehttp_client
:
from mcp import ClientSession
from mcp.client.streamable_http import streamablehttp_client
from langgraph.prebuilt import create_react_agent
from langchain_mcp_adapters.tools import load_mcp_tools
async with streamablehttp_client("http://localhost:3000/mcp") as (read, write, _):
async with ClientSession(read, write) as session:
await session.initialize()
tools = await load_mcp_tools(session)
agent = create_react_agent("openai:gpt-4.1", tools)
math_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})
Use it with MultiServerMCPClient
:
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
client = MultiServerMCPClient(
{
"math": {
"transport": "streamable_http",
"url": "http://localhost:3000/mcp"
},
}
)
tools = await client.get_tools()
agent = create_react_agent("openai:gpt-4.1", tools)
math_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})
Using with LangGraph StateGraph
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.prebuilt import ToolNode, tools_condition
from langchain.chat_models import init_chat_model
model = init_chat_model("openai:gpt-4.1")
client = MultiServerMCPClient(
{
"math": {
"command": "python",
"args": ["./examples/math_server.py"],
"transport": "stdio",
},
"weather": {
"url": "http://localhost:8000/mcp",
"transport": "streamable_http",
}
}
)
tools = await client.get_tools()
def call_model(state: MessagesState):
response = model.bind_tools(tools).invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_node(ToolNode(tools))
builder.add_edge(START, "call_model")
builder.add_conditional_edges(
"call_model",
tools_condition,
)
builder.add_edge("tools", "call_model")
graph = builder.compile()
math_response = await graph.ainvoke({"messages": "what's (3 + 5) x 12?"})
weather_response = await graph.ainvoke({"messages": "what is the weather in nyc?"})
Using with LangGraph API Server
[!TIP]
Check out this guide on getting started with LangGraph API server.
If you want to run a LangGraph agent that uses MCP tools in a LangGraph API server, you can use the following setup:
from contextlib import asynccontextmanager
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
async def make_graph():
client = MultiServerMCPClient(
{
"math": {
"command": "python",
"args": ["/path/to/math_server.py"],
"transport": "stdio",
},
"weather": {
"url": "http://localhost:8000/mcp",
"transport": "streamable_http",
}
}
)
tools = await client.get_tools()
agent = create_react_agent("openai:gpt-4.1", tools)
return agent
In your langgraph.json
make sure to specify make_graph
as your graph entrypoint:
{
"dependencies": ["."],
"graphs": {
"agent": "./graph.py:make_graph"
}
}
Add LangChain tools to a FastMCP server
Use to_fastmcp
to convert LangChain tools to FastMCP, and then add them to the FastMCP
server via the initializer:
[!NOTE]
tools
argument is only available in FastMCP as of mcp >= 1.9.1
from langchain_mcp_adapters.tools import to_fastmcp
from langchain_core.tools import tool
from mcp.server.fastmcp import FastMCP
@tool
def add(a: int, b: int) -> int:
"""Add two numbers"""
return a + b
fastmcp_tool = to_fastmcp(add)
mcp = FastMCP("Math", tools=[fastmcp_tool])
mcp.run(transport="stdio")