Socket
Book a DemoInstallSign in
Socket

layoutlens

Package Overview
Dependencies
Maintainers
1
Versions
8
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

layoutlens

AI-powered UI testing framework with natural language visual validation

Source
pipPyPI
Version
1.0.2
Maintainers
1

LayoutLens: AI-Powered Visual UI Testing

PyPI version Downloads Python 3.11+ Documentation

The Problem

Traditional UI testing is painful:

  • Brittle selectors break with every design change
  • Pixel-perfect comparisons fail on minor, acceptable variations
  • Writing test assertions requires deep technical knowledge
  • Cross-browser testing multiplies complexity
  • Generic analysis lacks domain expertise - accessibility, conversion optimization, mobile UX
  • Accessibility checks need specialized tools and expertise

The Solution

LayoutLens lets you test UIs the way humans see them - using natural language and domain expert knowledge:

# Basic analysis
result = await lens.analyze("https://example.com", "Is the navigation user-friendly?")

# Expert-powered analysis
result = await lens.audit_accessibility("https://example.com", compliance_level="AA")
# Returns: "WCAG AA compliant with 4.7:1 contrast ratio. Focus indicators visible..."

Instead of writing complex selectors and assertions, just ask questions like:

  • "Is this page mobile-friendly?"
  • "Are all buttons accessible?"
  • "Does the layout look professional?"

Get expert-level insights from built-in domain knowledge in accessibility, conversion optimization, mobile UX, and more.

✅ 95.2% accuracy on real-world UI testing benchmarks

Quick Start

Installation

pip install layoutlens
playwright install chromium  # For screenshot capture

Basic Usage

from layoutlens import LayoutLens

# Initialize (uses OPENAI_API_KEY env var)
lens = LayoutLens()

# Test any website or local HTML
result = await lens.analyze("https://your-site.com", "Is the header properly aligned?")
print(f"Answer: {result.answer}")
print(f"Confidence: {result.confidence:.1%}")

That's it! No selectors, no complex setup, just natural language questions.

Key Functions

1. Analyze Pages

Test single pages with custom questions:

# Test local HTML files
result = await lens.analyze("checkout.html", "Is the payment form user-friendly?")

# Test with expert context
from layoutlens.prompts import Instructions, UserContext

instructions = Instructions(
    expert_persona="conversion_expert",
    user_context=UserContext(
        business_goals=["reduce_cart_abandonment"],
        target_audience="mobile_shoppers"
    )
)

result = await lens.analyze(
    "checkout.html",
    "How can we optimize this checkout flow?",
    instructions=instructions
)

2. Compare Layouts

Perfect for A/B testing and redesign validation:

result = await lens.compare(
    ["old-design.html", "new-design.html"],
    "Which design is more accessible?"
)
print(f"Winner: {result.answer}")

3. Expert-Powered Analysis

Domain expert knowledge with one line of code:

# Professional accessibility audit (WCAG expert)
result = await lens.audit_accessibility("product-page.html", compliance_level="AA")

# Conversion rate optimization (CRO expert)
result = await lens.optimize_conversions("landing.html",
    business_goals=["increase_signups"], industry="saas")

# Mobile UX analysis (Mobile expert)
result = await lens.analyze_mobile_ux("app.html", performance_focus=True)

# E-commerce audit (Retail expert)
result = await lens.audit_ecommerce("checkout.html", page_type="checkout")

# Legacy methods still work
result = await lens.check_accessibility("product-page.html")  # Backward compatible

4. Batch Testing

Test multiple pages efficiently:

results = await lens.analyze(
    sources=["home.html", "about.html", "contact.html"],
    queries=["Is it accessible?", "Is it mobile-friendly?"]
)
# Processes 6 tests in parallel

5. High-Performance Async (3-5x faster)

# Async for maximum throughput
result = await lens.analyze(
    sources=["page1.html", "page2.html", "page3.html"],
    queries=["Is it accessible?"],
    max_concurrent=5
)

6. Structured JSON Output

All results provide clean, typed JSON for automation:

result = await lens.analyze("page.html", "Is it accessible?")

# Export to clean JSON
json_data = result.to_json()  # Returns typed JSON string
print(json_data)
# {
#   "source": "page.html",
#   "query": "Is it accessible?",
#   "answer": "Yes, the page follows accessibility standards...",
#   "confidence": 0.85,
#   "reasoning": "The page has proper heading structure...",
#   "screenshot_path": "/path/to/screenshot.png",
#   "viewport": "desktop",
#   "timestamp": "2024-01-15 10:30:00",
#   "execution_time": 2.3,
#   "metadata": {}
# }

# Type-safe structured access
from layoutlens.types import AnalysisResultJSON
import json
data: AnalysisResultJSON = json.loads(result.to_json())
confidence = data["confidence"]  # Fully typed: float

7. Domain Experts & Rich Context

Choose from 6 built-in domain experts with specialized knowledge:

# Available experts: accessibility_expert, conversion_expert, mobile_expert,
# ecommerce_expert, healthcare_expert, finance_expert

# Use any expert with custom analysis
result = await lens.analyze_with_expert(
    source="healthcare-portal.html",
    query="How can we improve patient experience?",
    expert_persona="healthcare_expert",
    focus_areas=["patient_privacy", "health_literacy"],
    user_context={
        "target_audience": "elderly_patients",
        "accessibility_needs": ["large_text", "simple_navigation"],
        "industry": "healthcare"
    }
)

# Expert comparison analysis
result = await lens.compare_with_expert(
    sources=["old-design.html", "new-design.html"],
    query="Which design converts better?",
    expert_persona="conversion_expert",
    focus_areas=["cta_prominence", "trust_signals"]
)

CLI Usage

# Analyze a single page
layoutlens https://example.com "Is this accessible?"

# Analyze local files
layoutlens page.html "Is the design professional?"

# Compare two designs
layoutlens page1.html page2.html --compare

# Analyze with different viewport
layoutlens site.com "Is it mobile-friendly?" --viewport mobile

# JSON output for automation
layoutlens page.html "Is it accessible?" --output json

CI/CD Integration

GitHub Actions

- name: Visual UI Test
  run: |
    pip install layoutlens
    playwright install chromium
    layoutlens ${{ env.PREVIEW_URL }} "Is it accessible and mobile-friendly?"

Python Testing

import pytest
from layoutlens import LayoutLens

@pytest.mark.asyncio
async def test_homepage_quality():
    lens = LayoutLens()
    result = await lens.analyze("homepage.html", "Is this production-ready?")
    assert result.confidence > 0.8
    assert "yes" in result.answer.lower()

Benchmark & Evaluation Workflow

LayoutLens includes a comprehensive benchmarking system to validate AI performance:

1. Generate Benchmark Results

# Run LayoutLens against test data
python benchmarks/run_benchmark.py --api-key sk-your-key

# With custom settings
python benchmarks/run_benchmark.py \
  --api-key sk-your-key \
  --output benchmarks/my_results \
  --no-batch \
  --filename custom_results.json

2. Evaluate Performance

# Evaluate results against ground truth
python benchmarks/evaluation/evaluator.py \
  --answer-keys benchmarks/answer_keys \
  --results benchmarks/layoutlens_output \
  --output evaluation_report.json

3. Structured Benchmark Results

The benchmark runner outputs clean JSON for analysis:

# Example benchmark result structure
{
  "benchmark_info": {
    "total_tests": 150,
    "successful_tests": 143,
    "failed_tests": 7,
    "success_rate": 0.953,
    "batch_processing_used": true,
    "model_used": "gpt-4o-mini"
  },
  "results": [
    {
      "html_file": "good_contrast.html",
      "query": "Is this page accessible?",
      "answer": "Yes, the page has good color contrast...",
      "confidence": 0.89,
      "reasoning": "WCAG guidelines are followed...",
      "success": true,
      "error": null,
      "metadata": {"category": "accessibility"}
    }
  ]
}

4. Custom Benchmarks

Create your own test data and answer keys:

# Use the async API for custom benchmark workflows
from layoutlens import LayoutLens

async def run_custom_benchmark():
    lens = LayoutLens()

    test_cases = [
        {"source": "page1.html", "query": "Is it accessible?"},
        {"source": "page2.html", "query": "Is it mobile-friendly?"}
    ]

    results = []
    for case in test_cases:
        result = await lens.analyze(case["source"], case["query"])
        results.append({
            "test": case,
            "result": result.to_json(),  # Clean JSON output
            "passed": result.confidence > 0.7
        })

    return results

Configuration

Simple configuration options:

# Via environment
export OPENAI_API_KEY="sk-..."

# Via code
lens = LayoutLens(
    api_key="sk-...",
    model="gpt-4o-mini",  # or "gpt-4o" for higher accuracy
    cache_enabled=True,   # Reduce API costs
    cache_type="memory",  # "memory" or "file"
)

Resources

Why LayoutLens?

  • Natural Language - Write tests like you'd describe the UI to a colleague
  • Domain Expert Knowledge - Built-in expertise in accessibility, CRO, mobile UX, and more
  • Rich Context Support - Business goals, user personas, compliance standards, and technical constraints
  • Zero Selectors - No more fragile XPath or CSS selectors
  • Visual Understanding - AI sees what users see, not just code
  • Async-by-Default - Concurrent processing for optimal performance
  • Simple API - One analyze method handles single pages, batches, and comparisons
  • Structured JSON Output - TypedDict schemas for full type safety in automation
  • Comprehensive Benchmarking - Built-in evaluation system with 95.2% accuracy
  • Production Ready - Used by teams for real-world applications

Making UI testing as simple as asking "Does this look right?"

Keywords

ui testing

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts