
Security News
Meet Socket at Black Hat and DEF CON 2025 in Las Vegas
Meet Socket at Black Hat & DEF CON 2025 for 1:1s, insider security talks at Allegiant Stadium, and a private dinner with top minds in software supply chain security.
Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning
Lazy Predict helps build a lot of basic models without much code and helps understand which models work better without any parameter tuning.
To install Lazy Predict:
pip install lazypredict
To use Lazy Predict in a project:
import lazypredict
Example:
from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
data = load_breast_cancer()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=123)
clf = LazyClassifier(verbose=0, ignore_warnings=True, custom_metric=None)
models, predictions = clf.fit(X_train, X_test, y_train, y_test)
print(models)
Model | Accuracy | Balanced Accuracy | ROC AUC | F1 Score | Time Taken |
---|---|---|---|---|---|
LinearSVC | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0150008 |
SGDClassifier | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0109992 |
MLPClassifier | 0.985965 | 0.986904 | 0.986904 | 0.985994 | 0.426 |
Perceptron | 0.985965 | 0.984797 | 0.984797 | 0.985965 | 0.0120046 |
LogisticRegression | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.0200036 |
LogisticRegressionCV | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.262997 |
SVC | 0.982456 | 0.979942 | 0.979942 | 0.982437 | 0.0140011 |
CalibratedClassifierCV | 0.982456 | 0.975728 | 0.975728 | 0.982357 | 0.0350015 |
PassiveAggressiveClassifier | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0130005 |
LabelPropagation | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0429988 |
LabelSpreading | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0310006 |
RandomForestClassifier | 0.97193 | 0.969594 | 0.969594 | 0.97193 | 0.033 |
GradientBoostingClassifier | 0.97193 | 0.967486 | 0.967486 | 0.971869 | 0.166998 |
QuadraticDiscriminantAnalysis | 0.964912 | 0.966206 | 0.966206 | 0.965052 | 0.0119994 |
HistGradientBoostingClassifier | 0.968421 | 0.964739 | 0.964739 | 0.968387 | 0.682003 |
RidgeClassifierCV | 0.97193 | 0.963272 | 0.963272 | 0.971736 | 0.0130029 |
RidgeClassifier | 0.968421 | 0.960525 | 0.960525 | 0.968242 | 0.0119977 |
AdaBoostClassifier | 0.961404 | 0.959245 | 0.959245 | 0.961444 | 0.204998 |
ExtraTreesClassifier | 0.961404 | 0.957138 | 0.957138 | 0.961362 | 0.0270066 |
KNeighborsClassifier | 0.961404 | 0.95503 | 0.95503 | 0.961276 | 0.0560005 |
BaggingClassifier | 0.947368 | 0.954577 | 0.954577 | 0.947882 | 0.0559971 |
BernoulliNB | 0.950877 | 0.951003 | 0.951003 | 0.951072 | 0.0169988 |
LinearDiscriminantAnalysis | 0.961404 | 0.950816 | 0.950816 | 0.961089 | 0.0199995 |
GaussianNB | 0.954386 | 0.949536 | 0.949536 | 0.954337 | 0.0139935 |
NuSVC | 0.954386 | 0.943215 | 0.943215 | 0.954014 | 0.019989 |
DecisionTreeClassifier | 0.936842 | 0.933693 | 0.933693 | 0.936971 | 0.0170023 |
NearestCentroid | 0.947368 | 0.933506 | 0.933506 | 0.946801 | 0.0160074 |
ExtraTreeClassifier | 0.922807 | 0.912168 | 0.912168 | 0.922462 | 0.0109999 |
CheckingClassifier | 0.361404 | 0.5 | 0.5 | 0.191879 | 0.0170043 |
DummyClassifier | 0.512281 | 0.489598 | 0.489598 | 0.518924 | 0.0119965 |
Example:
from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np
diabetes = datasets.load_diabetes()
X, y = shuffle(diabetes.data, diabetes.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]
reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
print(models)
Model | Adjusted R-Squared | R-Squared | RMSE | Time Taken |
---|---|---|---|---|
ExtraTreesRegressor | 0.378921 | 0.520076 | 54.2202 | 0.121466 |
OrthogonalMatchingPursuitCV | 0.374947 | 0.517004 | 54.3934 | 0.0111742 |
Lasso | 0.373483 | 0.515873 | 54.457 | 0.00620174 |
LassoLars | 0.373474 | 0.515866 | 54.4575 | 0.0087235 |
LarsCV | 0.3715 | 0.514341 | 54.5432 | 0.0160234 |
LassoCV | 0.370413 | 0.513501 | 54.5903 | 0.0624897 |
PassiveAggressiveRegressor | 0.366958 | 0.510831 | 54.7399 | 0.00689793 |
LassoLarsIC | 0.364984 | 0.509306 | 54.8252 | 0.0108321 |
SGDRegressor | 0.364307 | 0.508783 | 54.8544 | 0.0055306 |
RidgeCV | 0.363002 | 0.507774 | 54.9107 | 0.00728202 |
Ridge | 0.363002 | 0.507774 | 54.9107 | 0.00556874 |
BayesianRidge | 0.362296 | 0.507229 | 54.9411 | 0.0122972 |
LassoLarsCV | 0.361749 | 0.506806 | 54.9646 | 0.0175984 |
TransformedTargetRegressor | 0.361749 | 0.506806 | 54.9646 | 0.00604773 |
LinearRegression | 0.361749 | 0.506806 | 54.9646 | 0.00677514 |
Lars | 0.358828 | 0.504549 | 55.0903 | 0.00935149 |
ElasticNetCV | 0.356159 | 0.502486 | 55.2048 | 0.0478678 |
HuberRegressor | 0.355251 | 0.501785 | 55.2437 | 0.0129263 |
RandomForestRegressor | 0.349621 | 0.497434 | 55.4844 | 0.2331 |
AdaBoostRegressor | 0.340416 | 0.490322 | 55.8757 | 0.0512381 |
LGBMRegressor | 0.339239 | 0.489412 | 55.9255 | 0.0396187 |
HistGradientBoostingRegressor | 0.335632 | 0.486625 | 56.0779 | 0.0897055 |
PoissonRegressor | 0.323033 | 0.476889 | 56.6072 | 0.00953603 |
ElasticNet | 0.301755 | 0.460447 | 57.4899 | 0.00604224 |
KNeighborsRegressor | 0.299855 | 0.458979 | 57.5681 | 0.00757337 |
OrthogonalMatchingPursuit | 0.292421 | 0.453235 | 57.8729 | 0.00709486 |
BaggingRegressor | 0.291213 | 0.452301 | 57.9223 | 0.0302746 |
GradientBoostingRegressor | 0.247009 | 0.418143 | 59.7011 | 0.136803 |
TweedieRegressor | 0.244215 | 0.415984 | 59.8118 | 0.00633955 |
XGBRegressor | 0.224263 | 0.400567 | 60.5961 | 0.339694 |
GammaRegressor | 0.223895 | 0.400283 | 60.6105 | 0.0235181 |
RANSACRegressor | 0.203535 | 0.38455 | 61.4004 | 0.0653253 |
LinearSVR | 0.116707 | 0.317455 | 64.6607 | 0.0077076 |
ExtraTreeRegressor | 0.00201902 | 0.228833 | 68.7304 | 0.00626636 |
NuSVR | -0.0667043 | 0.175728 | 71.0575 | 0.0143399 |
SVR | -0.0964128 | 0.152772 | 72.0402 | 0.0114729 |
DummyRegressor | -0.297553 | -0.00265478 | 78.3701 | 0.00592971 |
DecisionTreeRegressor | -0.470263 | -0.136112 | 83.4229 | 0.00749898 |
GaussianProcessRegressor | -0.769174 | -0.367089 | 91.5109 | 0.0770502 |
MLPRegressor | -1.86772 | -1.21597 | 116.508 | 0.235267 |
KernelRidge | -5.03822 | -3.6659 | 169.061 | 0.0243919 |
Lazy Predict includes built-in MLflow integration. Enable it by setting the MLflow tracking URI:
import os
os.environ['MLFLOW_TRACKING_URI'] = 'sqlite:///mlflow.db'
# MLflow tracking will be automatically enabled
reg = LazyRegressor(verbose=0, ignore_warnings=True)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
Automatically tracks:
FAQs
Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning
We found that lazypredict demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Meet Socket at Black Hat & DEF CON 2025 for 1:1s, insider security talks at Allegiant Stadium, and a private dinner with top minds in software supply chain security.
Security News
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Security News
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.