Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

lazypredict

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

lazypredict

Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning

  • 0.2.13
  • PyPI
  • Socket score

Maintainers
2

Lazy Predict

image Build Status Documentation Status Downloads CodeFactor

Lazy Predict helps build a lot of basic models without much code and helps understand which models works better without any parameter tuning.

Installation

To install Lazy Predict:

pip install lazypredict

Usage

To use Lazy Predict in a project:

import lazypredict

Classification

Example :

from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

data = load_breast_cancer()
X = data.data
y= data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)

clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(X_train, X_test, y_train, y_test)

print(models)


| Model                          |   Accuracy |   Balanced Accuracy |   ROC AUC |   F1 Score |   Time Taken |
|:-------------------------------|-----------:|--------------------:|----------:|-----------:|-------------:|
| LinearSVC                      |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0150008 |
| SGDClassifier                  |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0109992 |
| MLPClassifier                  |   0.985965 |            0.986904 |  0.986904 |   0.985994 |    0.426     |
| Perceptron                     |   0.985965 |            0.984797 |  0.984797 |   0.985965 |    0.0120046 |
| LogisticRegression             |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.0200036 |
| LogisticRegressionCV           |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.262997  |
| SVC                            |   0.982456 |            0.979942 |  0.979942 |   0.982437 |    0.0140011 |
| CalibratedClassifierCV         |   0.982456 |            0.975728 |  0.975728 |   0.982357 |    0.0350015 |
| PassiveAggressiveClassifier    |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0130005 |
| LabelPropagation               |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0429988 |
| LabelSpreading                 |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0310006 |
| RandomForestClassifier         |   0.97193  |            0.969594 |  0.969594 |   0.97193  |    0.033     |
| GradientBoostingClassifier     |   0.97193  |            0.967486 |  0.967486 |   0.971869 |    0.166998  |
| QuadraticDiscriminantAnalysis  |   0.964912 |            0.966206 |  0.966206 |   0.965052 |    0.0119994 |
| HistGradientBoostingClassifier |   0.968421 |            0.964739 |  0.964739 |   0.968387 |    0.682003  |
| RidgeClassifierCV              |   0.97193  |            0.963272 |  0.963272 |   0.971736 |    0.0130029 |
| RidgeClassifier                |   0.968421 |            0.960525 |  0.960525 |   0.968242 |    0.0119977 |
| AdaBoostClassifier             |   0.961404 |            0.959245 |  0.959245 |   0.961444 |    0.204998  |
| ExtraTreesClassifier           |   0.961404 |            0.957138 |  0.957138 |   0.961362 |    0.0270066 |
| KNeighborsClassifier           |   0.961404 |            0.95503  |  0.95503  |   0.961276 |    0.0560005 |
| BaggingClassifier              |   0.947368 |            0.954577 |  0.954577 |   0.947882 |    0.0559971 |
| BernoulliNB                    |   0.950877 |            0.951003 |  0.951003 |   0.951072 |    0.0169988 |
| LinearDiscriminantAnalysis     |   0.961404 |            0.950816 |  0.950816 |   0.961089 |    0.0199995 |
| GaussianNB                     |   0.954386 |            0.949536 |  0.949536 |   0.954337 |    0.0139935 |
| NuSVC                          |   0.954386 |            0.943215 |  0.943215 |   0.954014 |    0.019989  |
| DecisionTreeClassifier         |   0.936842 |            0.933693 |  0.933693 |   0.936971 |    0.0170023 |
| NearestCentroid                |   0.947368 |            0.933506 |  0.933506 |   0.946801 |    0.0160074 |
| ExtraTreeClassifier            |   0.922807 |            0.912168 |  0.912168 |   0.922462 |    0.0109999 |
| CheckingClassifier             |   0.361404 |            0.5      |  0.5      |   0.191879 |    0.0170043 |
| DummyClassifier                |   0.512281 |            0.489598 |  0.489598 |   0.518924 |    0.0119965 |

Regression

Example :

from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np

boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)

offset = int(X.shape[0] * 0.9)

X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)

print(models)


| Model                         | Adjusted R-Squared | R-Squared |  RMSE | Time Taken |
|:------------------------------|-------------------:|----------:|------:|-----------:|
| SVR                           |               0.83 |      0.88 |  2.62 |       0.01 |
| BaggingRegressor              |               0.83 |      0.88 |  2.63 |       0.03 |
| NuSVR                         |               0.82 |      0.86 |  2.76 |       0.03 |
| RandomForestRegressor         |               0.81 |      0.86 |  2.78 |       0.21 |
| XGBRegressor                  |               0.81 |      0.86 |  2.79 |       0.06 |
| GradientBoostingRegressor     |               0.81 |      0.86 |  2.84 |       0.11 |
| ExtraTreesRegressor           |               0.79 |      0.84 |  2.98 |       0.12 |
| AdaBoostRegressor             |               0.78 |      0.83 |  3.04 |       0.07 |
| HistGradientBoostingRegressor |               0.77 |      0.83 |  3.06 |       0.17 |
| PoissonRegressor              |               0.77 |      0.83 |  3.11 |       0.01 |
| LGBMRegressor                 |               0.77 |      0.83 |  3.11 |       0.07 |
| KNeighborsRegressor           |               0.77 |      0.83 |  3.12 |       0.01 |
| DecisionTreeRegressor         |               0.65 |      0.74 |  3.79 |       0.01 |
| MLPRegressor                  |               0.65 |      0.74 |  3.80 |       1.63 |
| HuberRegressor                |               0.64 |      0.74 |  3.84 |       0.01 |
| GammaRegressor                |               0.64 |      0.73 |  3.88 |       0.01 |
| LinearSVR                     |               0.62 |      0.72 |  3.96 |       0.01 |
| RidgeCV                       |               0.62 |      0.72 |  3.97 |       0.01 |
| BayesianRidge                 |               0.62 |      0.72 |  3.97 |       0.01 |
| Ridge                         |               0.62 |      0.72 |  3.97 |       0.01 |
| TransformedTargetRegressor    |               0.62 |      0.72 |  3.97 |       0.01 |
| LinearRegression              |               0.62 |      0.72 |  3.97 |       0.01 |
| ElasticNetCV                  |               0.62 |      0.72 |  3.98 |       0.04 |
| LassoCV                       |               0.62 |      0.72 |  3.98 |       0.06 |
| LassoLarsIC                   |               0.62 |      0.72 |  3.98 |       0.01 |
| LassoLarsCV                   |               0.62 |      0.72 |  3.98 |       0.02 |
| Lars                          |               0.61 |      0.72 |  3.99 |       0.01 |
| LarsCV                        |               0.61 |      0.71 |  4.02 |       0.04 |
| SGDRegressor                  |               0.60 |      0.70 |  4.07 |       0.01 |
| TweedieRegressor              |               0.59 |      0.70 |  4.12 |       0.01 |
| GeneralizedLinearRegressor    |               0.59 |      0.70 |  4.12 |       0.01 |
| ElasticNet                    |               0.58 |      0.69 |  4.16 |       0.01 |
| Lasso                         |               0.54 |      0.66 |  4.35 |       0.02 |
| RANSACRegressor               |               0.53 |      0.65 |  4.41 |       0.04 |
| OrthogonalMatchingPursuitCV   |               0.45 |      0.59 |  4.78 |       0.02 |
| PassiveAggressiveRegressor    |               0.37 |      0.54 |  5.09 |       0.01 |
| GaussianProcessRegressor      |               0.23 |      0.43 |  5.65 |       0.03 |
| OrthogonalMatchingPursuit     |               0.16 |      0.38 |  5.89 |       0.01 |
| ExtraTreeRegressor            |               0.08 |      0.32 |  6.17 |       0.01 |
| DummyRegressor                |              -0.38 |     -0.02 |  7.56 |       0.01 |
| LassoLars                     |              -0.38 |     -0.02 |  7.56 |       0.01 |
| KernelRidge                   |             -11.50 |     -8.25 | 22.74 |       0.01 |

title: History

0.2.11 (2022-02-06)

  • Updated the default version to 3.9

0.2.10 (2022-02-06)

  • Fixed issue with older version of Scikit-learn
  • Reduced dependencies sctrictly to few

0.2.8 (2021-02-06)

  • Removed StackingRegressor and CheckingClassifier.
  • Added provided_models method.
  • Added adjusted r-squared metric.
  • Added cardinality check to split categorical columns into low and high cardinality features.
  • Added different transformation pipeline for low and high cardinality features.
  • Included all number dtypes as inputs.
  • Fixed dependencies.
  • Improved documentation.

0.2.7 (2020-07-09)

  • Removed catboost regressor and classifier

0.2.6 (2020-01-22)

  • Added xgboost, lightgbm, catboost regressors and classifiers

0.2.5 (2020-01-20)

  • Removed troublesome regressors from list of CLASSIFIERS

0.2.4 (2020-01-19)

  • Removed troublesome regressors from list of REGRESSORS
  • Added feature to input custom metric for evaluation
  • Added feature to return predictions as dataframe
  • Added model training time for each model

0.2.3 (2019-11-22)

  • Removed TheilSenRegressor from list of REGRESSORS
  • Removed GaussianProcessClassifier from list of CLASSIFIERS

0.2.2 (2019-11-18)

  • Fixed automatic deployment issue.

0.2.1 (2019-11-18)

  • Release of Regression feature.

0.2.0 (2019-11-17)

  • Release of Classification feature.

0.1.0 (2019-11-16)

  • First release on PyPI.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc