You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

litewave-ml-models-signature

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

litewave-ml-models-signature

A package for signature verification and classification.

0.0.8
pipPyPI
Maintainers
1

Signature Verification Module

A comprehensive Python package for signature verification and classification using deep learning models. This module supports both ResNet Siamese networks for verification and Vision Transformers (ViT) with ArcFace for classification.

Features

  • Multiple Model Architectures:
    • ResNet50 Siamese network with contrastive loss for signature verification
    • Vision Transformer (ViT) with ArcFace loss for signature classification
  • S3 Integration: Seamless integration with AWS S3 for model weights and dataset storage
  • Flexible Configuration: Environment variable-based configuration system
  • Complete Pipeline: From data preprocessing to model training and inference
  • Production Ready: Optimized for both research and production deployment

Installation

Requirements

  • Python 3.8+
  • PyTorch 1.9+
  • torchvision
  • timm (for ViT models)
  • scikit-image
  • scikit-learn
  • pandas
  • PIL/Pillow
  • boto3 (for S3 support)
  • pydantic
  • scipy

Install Dependencies

pip install torch torchvision torchaudio
pip install timm scikit-image scikit-learn pandas pillow boto3 pydantic scipy

Quick Start

Basic Usage

from signature import SignatureConfig, load_model, classify_signatures

# Configure the module
config = SignatureConfig(
    model_type="vit",
    num_classes=100,
    model_s3_path="s3://my-bucket/models/signature_vit.pth"
)

# Load a trained model
model = load_model()

# Classify signatures
results = classify_signatures(
    model=model,
    reference_path="path/to/reference/signatures",
    detected_path="path/to/detected/signatures"
)

print(f"Accepted signatures: {results['accepted_signatures']}")

Training a Model

from signature import train_model, create_dataset_csv

# Create a dataset CSV from image directory
create_dataset_csv(
    image_directory="path/to/signature/images",
    output_csv="dataset.csv",
    dataset_type="single"  # or "pairs" for ResNet
)

# Train a model
model, metrics = train_model(
    model_type="vit",
    dataset_path="dataset.csv",
    save_path="s3://my-bucket/models/trained_model.pth",
    num_classes=100,
    epochs=20
)

print(f"Test accuracy: {metrics['test_accuracy']:.4f}")

Configuration

The module supports configuration through environment variables or programmatically:

Environment Variables

# Model configuration
export SIGNATURE_MODEL_TYPE=vit
export SIGNATURE_NUM_CLASSES=100
export SIGNATURE_MODEL_S3_PATH=s3://my-bucket/models/model.pth

# AWS configuration
export AWS_ACCESS_KEY_ID=your_access_key
export AWS_SECRET_ACCESS_KEY=your_secret_key
export AWS_DEFAULT_REGION=us-east-2

# Training configuration
export SIGNATURE_BATCH_SIZE=32
export SIGNATURE_LEARNING_RATE=5e-5
export SIGNATURE_EPOCHS=15

Programmatic Configuration

from signature import SignatureConfig, set_config

config = SignatureConfig(
    model_type="vit",
    num_classes=100,
    batch_size=32,
    learning_rate=5e-5,
    aws_access_key_id="your_access_key",
    aws_secret_access_key="your_secret_key"
)

set_config(config)

Model Architectures

ResNet50 Siamese

Best for signature verification (determining if two signatures are from the same person):

from signature import ResNet50Siamese, train_resnet

# Create model
model = ResNet50Siamese(embedding_dim=512)

# Train model
model, metrics = train_resnet(
    dataset_path="pairs_dataset.csv",
    epochs=25,
    margin=17.5
)

Vision Transformer (ViT)

Best for signature classification (identifying which person signed):

from signature import SignatureViT, train_vit

# Create model
model = SignatureViT(num_classes=100, embedding_dim=512)

# Train model
model, metrics = train_vit(
    num_classes=100,
    dataset_path="single_image_dataset.csv",
    epochs=15
)

Data Preparation

Directory Structure

Organize your signature images in the following structure:

signatures/
├── person1/
│   ├── signature1.png
│   ├── signature2.png
│   └── signature3.png
├── person2/
│   ├── signature1.png
│   └── signature2.png
└── person3/
    ├── signature1.png
    ├── signature2.png
    └── signature4.png

Creating Dataset CSVs

from signature import create_dataset_csv

# For ViT (single image classification)
create_dataset_csv(
    image_directory="signatures/",
    output_csv="vit_dataset.csv",
    dataset_type="single"
)

# For ResNet (image pairs)
create_dataset_csv(
    image_directory="signatures/",
    output_csv="resnet_dataset.csv",
    dataset_type="pairs",
    pairs_per_person=50
)

S3 Integration

The module seamlessly works with S3 for storing models, datasets, and reference signatures:

from signature import S3Manager

# Create S3 manager
s3_manager = S3Manager()

# Download model weights
s3_manager.download_file(
    "s3://my-bucket/models/model.pth", 
    "local_model.pth"
)

# Upload trained model
s3_manager.upload_file(
    "local_model.pth",
    "s3://my-bucket/models/new_model.pth"
)

Advanced Usage

Custom Feature Extraction

from signature import get_fused_features, extract_deep_features

# Extract fused features (deep + HOG)
features = get_fused_features(model, "signature.png")

# Extract only deep features
deep_features = extract_deep_features(model, "signature.png")

Custom Training Loop

from signature import (
    create_model, ContrastiveLoss, create_dataloader, 
    get_config
)
import torch

config = get_config()

# Create model and loss
model = create_model(model_type="resnet")
criterion = ContrastiveLoss(margin=17.5)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

# Create data loaders
train_loader, val_loader, test_loader = create_dataloader(
    "dataset.csv", 
    dataset_type="pairs",
    batch_size=32
)

# Custom training loop
for epoch in range(10):
    for img1, img2, labels in train_loader:
        optimizer.zero_grad()
        emb1, emb2 = model(img1, img2)
        loss = criterion(emb1, emb2, labels)
        loss.backward()
        optimizer.step()

API Reference

Core Functions

  • load_model(): Load a trained model with optional S3 weights
  • classify_signatures(): Classify detected signatures against references
  • train_model(): Train a model with automatic type detection
  • create_dataset_csv(): Create dataset CSV from image directory

Model Classes

  • ResNet50Siamese: Siamese ResNet50 for signature verification
  • SignatureViT: Vision Transformer with ArcFace for classification
  • ContrastiveLoss: Contrastive loss for Siamese networks
  • ArcFace: Angular margin loss implementation

Data Classes

  • SignatureDataset: Dataset for single signature images
  • SignaturePairDataset: Dataset for signature image pairs
  • create_dataloader(): Create train/val/test data loaders

Utility Classes

  • SignatureConfig: Configuration management
  • S3Manager: S3 operations manager

Performance Tips

  • Use GPU: Set SIGNATURE_DEVICE=cuda for faster training and inference
  • Batch Processing: Use larger batch sizes for better GPU utilization
  • Data Augmentation: Enable augmentation for better generalization
  • Caching: Models and datasets are automatically cached locally
  • S3 Optimization: Use appropriate S3 region for reduced latency

Troubleshooting

Common Issues

  • Import Errors: Ensure all dependencies are installed
  • S3 Access: Check AWS credentials and permissions
  • Memory Issues: Reduce batch size or use CPU if GPU memory is limited
  • Image Format: Ensure images are in supported formats (PNG, JPG, JPEG)

Debug Mode

Enable detailed logging:

from signature.utils import setup_logging
setup_logging("DEBUG")

Examples

See the examples/ directory for complete examples:

  • train_vit_example.py: Training a ViT model
  • train_resnet_example.py: Training a ResNet Siamese model
  • inference_example.py: Running inference on new signatures
  • s3_integration_example.py: Working with S3 storage

License

This module is part of the LiteWave ML Models repository.

Keywords

signature

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.