
Security News
Open Source CAI Framework Handles Pen Testing Tasks up to 3,600× Faster Than Humans
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
The library provides convenient access to the Livescraper API <https://livescraper.com/api-doc.html>
_ from applications written in the Python language. It allows using Livescraper’s services <https://livescraper.com/services>
_ from your code.
Find the full documentation here:
API Documentation <https://livescraper.com/api-doc.html>
_
Python 3+ is required.
To install the package, use the following command:
.. code:: bash
pip install livescraper
For more details, visit:
Livescraper on PyPI <https://pypi.org/project/livescraper/>
_
To initialize the scraper with your API key:
.. code:: python
from livescraper import ApiClient
scraper = ApiClient(api_key)
Create your API key here:
Create API Key <https://app.livescraper.com/user-profile>
_
To search for businesses in specific locations:
.. code:: python
results = scraper.google_maps_search( queries=["Restaurants in Alakanuk, AK, United States"], enrichment="True", fields=[ "query", "google_place_url", "business_name", "business_website", "business_phone", "type", "sub_types", "category", "full_address", "borough", "street", "city", "postal_code", "state", "country", "country_code", "timezone", "latitude", "longitude", "plus_code", "area_service", "review_url", "reviews_id", "total_reviews", "average_rating", "reviews_per_score", "reviews_per_score_1", "reviews_per_score_2", "reviews_per_score_3", "reviews_per_score_4", "reviews_per_score_5", "working_hours", "working_hours_old_format", "popular_time", "about", "posts", "description", "logo_url", "photos_count", "photo_url", "street_view", "price_range", "business_status", "is_verified", "owner_title", "owner_link", "owner_id", "reserving_table_links", "booking_appointment_link", "order_link", "menu_link", "place_id", "google_id", "place_cid", "located_in", "located_google_id", "org_link", "host", "domain_status", "email_1", "email_2", "email_3", "all_emails", "phone_1", "phone_2", "phone_3", "all_phones", "contact_page", "facebook", "twitter", "instagram", "youtube", "linkedin", "website_built_with", "website_title", "website_desc" ] )
results = scraper.google_maps_search( queries=["ChIJrc9T9fpYwokRdvjYRHT8nI4"], enrichment="True", fields=[ "query", "google_place_url", "business_name", "business_website", "business_phone", "type", "sub_types", "category", "full_address", "borough", "street", "city", "postal_code", "state", "country", "country_code", "timezone", "latitude", "longitude", "plus_code", "area_service", "review_url", "reviews_id", "total_reviews", "average_rating", "reviews_per_score", "reviews_per_score_1", "reviews_per_score_2", "reviews_per_score_3", "reviews_per_score_4", "reviews_per_score_5", "working_hours", "working_hours_old_format", "popular_time", "about", "posts", "description", "logo_url", "photos_count", "photo_url", "street_view", "price_range", "business_status", "is_verified", "owner_title", "owner_link", "owner_id", "reserving_table_links", "booking_appointment_link", "order_link", "menu_link", "place_id", "google_id", "place_cid", "located_in", "located_google_id", "org_link", "host", "domain_status", "email_1", "email_2", "email_3", "all_emails", "phone_1", "phone_2", "phone_3", "all_phones", "contact_page", "facebook", "twitter", "instagram", "youtube", "linkedin", "website_built_with", "website_title", "website_desc" ] )
results = scraper.google_maps_search( queries=[ "restaurants california usa", "pub brooklyn usa" ], enrichment="True", fields=[ "query", "google_place_url", "business_name", "business_website", "business_phone", "type", "sub_types", "category", "full_address", "borough", "street", "city", "postal_code", "state", "country", "country_code", "timezone", "latitude", "longitude", "plus_code", "area_service", "review_url", "reviews_id", "total_reviews", "average_rating", "reviews_per_score", "reviews_per_score_1", "reviews_per_score_2", "reviews_per_score_3", "reviews_per_score_4", "reviews_per_score_5", "working_hours", "working_hours_old_format", "popular_time", "about", "posts", "description", "logo_url", "photos_count", "photo_url", "street_view", "price_range", "business_status", "is_verified", "owner_title", "owner_link", "owner_id", "reserving_table_links", "booking_appointment_link", "order_link", "menu_link", "place_id", "google_id", "place_cid", "located_in", "located_google_id", "org_link", "host", "domain_status", "email_1", "email_2", "email_3", "all_emails", "phone_1", "phone_2", "phone_3", "all_phones", "contact_page", "facebook", "twitter", "instagram", "youtube", "linkedin", "website_built_with", "website_title", "website_desc" ] )
To get reviews of a specific place:
.. code:: python
results = scraper.google_review_search( 'ChIJrc9T9fpYwokRdvjYRHT8nI4', fields=[ "query", "business_name", "google_id", "place_id", "place_cid", "google_place_url", "review_url", "reviews_per_score", "total_reviews", "average_rating", "review_id", "author_link", "author_title", "author_id", "author_image", "review_text", "review_img_url", "review_img_urls", "owner_answer", "owner_answer_timestamp", "owner_answer_timestamp_datetime_utc", "review_link", "review_rating", "review_timestamp", "review_datetime_utc", "review_likes", "reviews_id" ] )
results = scraper.google_review_search( 'real estate agents in Los Angeles, CA', fields=[ "query", "business_name", "google_id", "place_id", "place_cid", "google_place_url", "review_url", "reviews_per_score", "total_reviews", "average_rating", "review_id", "author_link", "author_title", "author_id", "author_image", "review_text", "review_img_url", "review_img_urls", "owner_answer", "owner_answer_timestamp", "owner_answer_timestamp_datetime_utc", "review_link", "review_rating", "review_timestamp", "review_datetime_utc", "review_likes", "reviews_id" ] )
To get emails and contacts from a URL:
.. code:: python
results = scraper.google_email_search( queries=["livescraper.com"] )
Google Maps (Places) response example:
.. code:: python
[
{
"name": "The Rustic Table",
"full_address": "45 Elm Street, Greenfield, MA 01301",
"borough": "Downtown Greenfield",
"street": "45 Elm Street",
"city": "Greenfield",
"postal_code": "01301",
"country_code": "US",
"country": "United States of America",
"us_state": "Massachusetts",
"state": "Massachusetts",
"plus_code": null,
"latitude": 42.587042,
"longitude": -72.601493,
"time_zone": "America/New_York",
"popular_times": null,
"site": "http://www.therustictable.com/",
"phone": "+1 413-555-1234",
"type": "Farm-to-table restaurant",
"category": "restaurants",
"subtypes": "Farm-to-table restaurant, Bistro, Organic restaurant, Vegan restaurant, Restaurant, Wine bar",
"posts": null,
"rating": 4.7,
"reviews": 540,
"reviews_data": null,
"photos_count": 320,
"google_id": "0x89df123456789abc:0xa1b2c3d4e5f6g7h8",
"place_id": "ChIJ1234abcd5678efgh90ijkl",
"reviews_link": "https://search.google.com/local/reviews?placeid=ChIJ1234abcd5678efgh90ijkl&q=restaurants+greenfield+usa&authuser=0&hl=en&gl=US",
"reviews_id": "-1234567890123456789",
"photo": "https://example.com/photos/restaurant.jpg",
"street_view": "https://example.com/streetview/restaurant.jpg",
"working_hours_old_format": "Monday: Closed | Tuesday: 5–10PM | Wednesday: 5–10PM | Thursday: 5–10PM | Friday: 5–11PM | Saturday: 12–3PM, 5–11PM | Sunday: 12–3PM, 5–9PM",
"working_hours": {
"Monday": "Closed",
"Tuesday": "5–10PM",
"Wednesday": "5–10PM",
"Thursday": "5–10PM",
"Friday": "5–11PM",
"Saturday": "12–3PM, 5–11PM",
"Sunday": "12–3PM, 5–9PM"
},
"business_status": "OPERATIONAL",
"about": {
"Service options": {
"Dine-in": true,
"Delivery": true,
"Takeout": true
},
"Health & safety": {
"Mask required": false,
"Staff required to disinfect surfaces between visits": true
},
"Highlights": {
"Farm-to-table ingredients": true,
"Great cocktails": true,
"Live music": true
},
"Popular for": {
"Lunch": true,
"Dinner": true,
"Special occasions": true
},
"Accessibility": {
"Wheelchair accessible entrance": true,
"Wheelchair accessible restroom": true,
"Wheelchair accessible seating": true
},
"Offerings": {
"Local beers": true,
"Seasonal dishes": true,
"Vegetarian options": true,
"Vegan options": true,
"Organic dishes": true,
"Wine": true
},
"Dining options": {
"Dessert": true,
"Outdoor seating": true
},
"Amenities": {
"Free parking": true,
"Wi-Fi": true
},
"Atmosphere": {
"Cozy": true,
"Casual": true,
"Family-friendly": true
},
"Crowd": {
"Groups": true,
"Couples": true
},
"Planning": {
"Dinner reservations recommended": true,
"Accepts reservations": true
},
"Payments": {
"Credit cards": true,
"Contactless payments": true
}
},
"range": "$$",
"reviews_per_score": {
"1": 5,
"2": 7,
"3": 30,
"4": 120,
"5": 378
},
"reserving_table_link": "https://example.com/reserve",
"booking_appointment_link": "https://example.com/book",
"owner_id": "123456789012345678901",
"verified": true,
"owner_title": "The Rustic Table",
"owner_link": "https://www.google.com/maps/contrib/123456789012345678901",
"location_link": "https://www.google.com/maps/place/The+Rustic+Table/@42.587042,-72.601493,14z/data=!4m8!1m2!2m1!1sRustic+Table!3m4!1s0x89df123456789abc:0xa1b2c3d4e5f6g7h8!8m2!3d42.587042!4d-72.601493"
}
]
Google Maps Reviews response example:
.. code:: python
[
{
"name": "Urban Feast",
"address": "123 Main St, Springfield, IL 62701",
"type": "Contemporary restaurant",
"postal_code": "62701",
"latitude": 39.7817213,
"longitude": -89.6501481,
"phone": "+1 217-555-1234",
"rating": 4.8,
"reviews": 432,
"site": "http://www.urbanfeast.com/",
"photos_count": 250,
"google_id": "0x89abcdef12345678:0xabcdef1234567890",
"reviews_link": "https://www.google.com/search?q=Urban+Feast,+123+Main+St,+Springfield,+IL+62701&ludocid=1234567890987654321#lrd=0x89abcdef12345678:0xabcdef1234567890,1",
"reviews_data": [
{
"google_id": "0x89abcdef12345678:0xabcdef1234567890",
"autor_link": "https://www.google.com/maps/contrib/11234567890123456789?hl=en-US",
"autor_name": "Jane Doe",
"autor_id": "11234567890123456789",
"review_text": "Amazing food and great atmosphere! Highly recommend the chef's special.",
"review_link": "https://www.google.com/maps/reviews/data=!4m5!14m4!1m3!1m2!1s11234567890123456789!2s0x0:0xabcdef1234567890?hl=en-US",
"review_rating": 5,
"review_timestamp": 1680304800,
"review_datetime_utc": "03/31/2023 12:00:00",
"review_likes": 10
}
]
}
]
Emails & Contacts Scraper response example:
.. code:: python
[
{
"query": "livescraper.com",
"domain": "livescraper.com",
"emails": [
{
"value": "support@livescraper.com",
"sources": [
{
"ref": "https://livescraper.com/",
"extracted_on": "2023-01-01T10:00:00.000Z",
"updated_on": "2023-03-01T12:00:00.000Z"
}
]
}
],
"phones": [
{
"value": "12812368208",
"sources": [
{
"ref": "https://livescraper.com/",
"extracted_on": "2023-01-01T10:00:00.000Z",
"updated_on": "2023-03-01T12:00:00.000Z"
}
]
}
],
"socials": {
"facebook": "https://www.facebook.com/livescraper/",
"github": "https://github.com/livescraper",
"linkedin": "https://www.linkedin.com/company/livescraper/",
"twitter": "https://twitter.com/livescraper",
"youtube": "https://www.youtube.com/channel/UCDYOuXSEenLpt5tKNq-0l9Q"
},
"site_data": {
"description": "Scrape Google Maps Places, Business Reviews, and more using Livescraper API.",
"title": "Livescraper - Web Scraping Simplified"
}
}
]
FAQs
Python bindings for the Livescraper API
We found that livescraper demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.
Security News
Deno 2.4 brings back bundling, improves dependency updates and telemetry, and makes the runtime more practical for real-world JavaScript projects.
Security News
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.